Objective Autologous articular cartilage (AC) harvested for repair procedures of high weight bearing (HWB) regions of the femoral condyles is typically obtained from low weight bearing (LWB) regions, in part due to the lack of non-destructive techniques for cartilage composition assessment. Here, we demonstrate that infrared fiber optic spectroscopy can be used to non-destructively evaluate variations in compositional and mechanical properties of AC across LWB and HWB regions. Design AC plugs ( N = 72) were harvested from the patellofemoral groove of juvenile bovine stifle joints, a LWB region, and femoral condyles, a HWB region. Near-infrared (NIR) and mid-infrared (MIR) fiber optic spectra were collected from plugs, and indentation tests were performed to determine the short-term and equilibrium moduli, followed by gravimetric water and biochemical analysis. Results LWB tissues had a significantly greater amount of water determined by NIR and gravimetric assay. The moduli generally increased in tissues from the patellofemoral groove to the condyles, with HWB condyle cartilage having significantly higher moduli. A greater amount of proteoglycan content was also found in HWB tissues, but no differences in collagen content. In addition, NIR-determined water correlated with short-term modulus and proteoglycan content ( R = -0.40 and -0.31, respectively), and a multivariate model with NIR data was able to predict short-term modulus within 15% error. Conclusions The properties of tissues from LWB regions differ from HWB tissues and can be determined non-destructively by infrared fiber optic spectroscopy. Clinicians may be able to use this modality to assess AC prior to harvesting osteochondral grafts for focal defect repair.
Tissue engineering (TE) approaches are being widely investigated for repair of focal defects in articular cartilage. However, the amount and/or type of extracellular matrix (ECM) produced in engineered constructs does not always correlate with the resultant mechanical properties. This could be related to the specifics of ECM distribution throughout the construct. Here, we present data on the amount and distribution of the primary components of native and engineered cartilage (i.e., collagen, proteoglycan (PG), and water) using Fourier transform infrared imaging spectroscopy (FT-IRIS). These data permit visualization of matrix and water at 25 μm resolution throughout the tissues, and subsequent colocalization of these components using image processing methods. Native and engineered cartilage were cryosectioned at 80 μm for evaluation by FT-IRIS in the mid-infrared (MIR) and near-infrared (NIR) regions. PG distribution correlated strongly with water in native and engineered cartilage, supporting the binding of water to PG in both tissues. In addition, NIR-derived matrix peaks correlated significantly with MIR-derived collagen peaks, confirming the interpretation that these absorbances arise primarily from collagen and not PG. The combined use of MIR and NIR permits assessment of ECM and water spatial distribution at the micron level, which may aid in improved development of TE techniques.
On the back cover: The cover image, submitted by James P. Karchner et al., is from the original article “Spatial correlation of native and engineered cartilage components at micron resolution,” https://doi.org/10.1111/nyas.13934.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.