The tropomyosins are a family of actin filament binding proteins. In multicellular animals, they exhibit extensive cell type specific isoform diversity. In this essay we discuss the genetic mechanisms by which this diversity is generated and its possible significance to cellular function.
Mutants of HERG, the human form of ERG (the ether-a-go-go-related K+ channel gene), are responsible for some forms of the long-QT syndrome, an abnormality of cardiac repolarization. HERG was cloned from brain and has properties similar but not identical to the rapidly activating component of the native cardiac K+ channel current (Ikr). We identified in the mouse an alternatively processed form of ERG (MERG B) that is expressed abundantly in heart but only in trace amounts in brain. MERG B has a unique 36-amino acid NH2-terminal domain that is strongly basic and considerably shorter than the 376-amino acid NH2-terminal domain of HERG. When expressed in Xenopus oocytes, the kinetics of activation and deactivation of the MERG B current were best fit by a biexponential function, with the fast components dominant over the slow components. The fast component of activation had a mean tau value of 163 +/- 16 ms at -20 mV and 8 +/- 4 ms at +20 mV (n = 4). The fast component of deactivation had a mean tau value of 145 +/- 29 ms at -20 mV and 12 +/- 4 ms at -90 mV (n = 4). The MERG B current was blocked by the selective IKr blocker, dofetilide, with an IC50 of 54 nmol/L. In addition, we isolated HERG B, the human homologue of MERG B, which has electrophysiological characteristics qualitatively similar to those of MERG B. We have identified ERG B, an alternatively processed isoform of the ERG gene, expressed selectively in heart and with electrophysiological characteristics similar to those of native cardiac IKr.
New findings r What is the central question of this study?Heart failure is associated with persistent sterile inflammation that worsens disease severity; however, the molecular mechanisms behind cytokine recruitment and their relevance in the diseased myocardium remain unknown. r What is the main finding and its importance?We show that interleukin-1β is activated downstream of the Nlrp3 inflammasome in calcineurin-transgene-induced structural heart disease. Genetic deletion of Nlrp3 abrogated inflammasome signalling and interleukin-1β release, improving function. The role of Nlrp3 in non-ischaemic cardiomyopathy and the utility of inflammasome antagonism have not yet been explored, revealing potential for translational application.Heart failure is associated with a low-grade and chronic cardiac inflammation that impairs function; however, the mechanisms by which this sterile inflammation occurs in structural heart disease remain poorly defined. Cardiac-specific heterozygous overexpression of the calcineurin transgene (CNTg) in mice results in cardiac hypertrophy, inflammation, apoptosis and ventricular dilatation. We hypothesized that activation of the Nlrp3 inflammasome, an intracellular danger-sensing pathway required for processing the pro-inflammatory cytokine interleukin-1β (IL-1β), may contribute to myocardial dysfunction and disease progression. Here we report that Nlrp3 mRNA was increased in CNTg mice compared with wild-type. Consistent with inflammasome activation, CNTg animals had increased conversion of procaspase-1 to cleaved and activated forms, as well as markedly increased serum IL-1β. Blockade of IL-1β signalling via chronic IL-1 receptor antagonist therapy reduced cardiac inflammation and myocyte pathology in CNTg mice, resulting in improved systolic performance. Furthermore, genetic ablation of Nlrp3 in CNTg mice reduced pro-inflammatory cytokine maturation and cardiac inflammation, as well as improving systolic performance. These findings indicate that activation of the Nlrp3 inflammasome in CNTg mice promotes myocardial inflammation and systolic dysfunction through the production of pro-inflammatory IL-1β. Blockade of IL-1β signalling with the IL-1 receptor antagonist reverses these phenotypes and offers a possible therapeutic approach in the management of heart failure.
Actin is a cytoskeletal protein which is highly conserved across eukaryotic phyla. Actin filaments, in association with a family of myosin motor proteins, are required for cellular motile processes as diverse as vesicle transport, cell locomotion and cytokinesis. Many organisms have several closely related actin isoforms. In addition to conventional actins, yeasts contain actin-related proteins that are essential for viability. We show here that vertebrates also contain an actin-related protein (actin-RPV). Actin-RPV is a major component of the dynactin complex, an activator of dynein-driven vesicle movement, indicating that unlike conventional actins which work in conjunction with myosin motors, actin-RPV may be involved in cytoplasmic movements via a microtubule-based system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.