The decline in the eastern North American population of the monarch butterfly population since the late 1990s has been attributed to the loss of milkweed during the summer breeding season and the consequent reduction in the size of the summer population that migrates to central Mexico to overwinter (milkweed limitation hypothesis). However, in some studies the size of the summer population was not found to decline and was not correlated with the size of the overwintering population. The authors of these studies concluded that milkweed limitation could not explain the overwintering population decline. They hypothesized that increased mortality during fall migration was responsible (migration mortality hypothesis). We used data from the long-term monarch tagging program, managed by Monarch Watch, to examine three predictions of the migration mortality hypothesis: (1) that the summer population size is not correlated with the overwintering population size, (2) that migration success is the main determinant of overwintering population size, and (3) that migration success has declined over the last two decades. As an index of the summer population size, we used the number of wildcaught migrating individuals tagged in the U.S. Midwest from 1998 to 2015. As an index of migration success we used the recovery rate of Midwest tagged individuals in Mexico. With regard to the three predictions: (1) the number of tagged individuals in the Midwest, explained 74% of the variation in the size of the overwintering population. Other measures of summer population size were also correlated with overwintering population size. Thus, there is no disconnection between late summer and winter population sizes. (2) Migration success was not significantly correlated with overwintering population size, and (3) migration success did not decrease during this period. Migration success was correlated with the level of greenness of the area in the southern U.S. used for nectar by migrating butterflies. Thus, the main determinant of yearly variation in overwintering population size is summer population size with migration success being a minor determinant. Consequently, increasing milkweed habitat, which has the potential of increasing the summer monarch population, is the conservation measure that will have the greatest impact.
A basic question concerning the monarch butterflies' fall migration is which monarchs succeed in reaching overwintering sites in Mexico, which fail-and why. We document the timing and pace of the fall migration, ask whether the sun's position in the sky is associated with the pace of the migration, and ask whether timing affects success in completing the migration. Using data from the Monarch Watch tagging program, we explore whether the fall monarch migration is associated with the daily maximum vertical angle of the sun above the horizon (Sun Angle at Solar Noon, SASN) or whether other processes are more likely to explain the pace of the migration. From 1998 to 2015, more than 1.38 million monarchs were tagged and 13,824 (1%) were recovered in Mexico. The pace of migration was relatively slow early in the migration but increased in late September and declined again later in October as the migrating monarchs approached lower latitudes. This slow-fast-slow pacing in the fall migration is consistent with monarchs reaching latitudes with the same SASN, day after day, as they move south to their overwintering sites. The observed pacing pattern and overall movement rates are also consistent with monarchs migrating at a pace determined by interactions among SASN, temperature, and daylength. The results suggest monarchs successfully reaching the Monarch Butterfly Biosphere Reserve (MBBR) migrate within a "migration window" with an SASN of about 57 • at the leading edge of the migration and 46 • at the trailing edge. Ninety percent of the tags recovered in Mexico were from monarchs tagged within this window. Migrants reaching locations along the migration route with SASN outside this migration window may be considered early or late migrants. We noted several years with low overwintering abundance of monarchs, 2004 and 2011-2014, with high percentages of late migrants. This observation suggests a possible effect of migration timing on population size. The migration window defined by SASN can serve as a framework against which to establish the influence of environmental factors on the size, geographic distribution, and timing of past and future fall migrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.