Chiral thiophene-diketopyrrolopyrrole derivatives have been synthesised to investigate the potential of stereochemistry and symmetry as a means of modulating properties by influencing self-assembly of these purely organic materials. In particular, derivatives of diketopyrrolopyrrole were employed because of their proven interest as dyes, especially for organic solar cells. The natural product myrtenal was used as the source of stereochemistry, introduced through a Kröhnke reaction of a thiophene-bearing pyridinium salt and diketopyrrolopyrroles were prepared through Suzuki coupling with this chiral moiety at one end only as well as at both ends. Absorption spectroscopy and electrochemistry confirmed the potential suitability of the compounds for photovoltaic devices. The nanostructures formed by the compounds have been probed with circular dichroism spectroscopy in solution and in films. It is shown that a chiral C symmetric molecule assembles in solution giving a strong circular dichroic signal while as a film this optical activity is nulled, whereas an asymmetric homologue is most optically active as a thin film. The X-ray crystal structure of the asymmetric compound shows a polar order of the molecules that might explain this observation. The lack of optical activity in solution is very likely a result of the high solubility of the compound. The results reaffirm the sensitivity of circular dichroism spectroscopy to inter-chromophore organisation, whereas absorption spectroscopy in the visible region reveals only slight changes to the bands. The differing order in the compounds also affects their performance in bulk heterojunction photovoltaic devices. Atomic force microscopy of the blended thin films with the fullerene derivative usually employed (PC BM) showed that smooth and well mixed films were achieved, with the conditions required during spin coating depending greatly on the derivative, because of their differing solubility. The apparently better performance of the symmetrical compound (although with very low efficiency) is probably a result of the alignment of the molecules inferred by the circular dichroism experiments, whereas the asymmetric compound presumably adopts a twisted supramolecular organisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.