TRAIL (also called Apo2L) belongs to the tumor necrosis factor family, activates rapid apoptosis in tumor cells, and binds to the death-signaling receptor DR4. Two additional TRAIL receptors were identified. The receptor designated death receptor 5 (DR5) contained a cytoplasmic death domain and induced apoptosis much like DR4. The receptor designated decoy receptor 1 (DcR1) displayed properties of a glycophospholipid-anchored cell surface protein. DcR1 acted as a decoy receptor that inhibited TRAIL signaling. Thus, a cell surface mechanism exists for the regulation of cellular responsiveness to pro-apoptotic stimuli.
Apo2 ligand (Apo2L [1], also called TRAIL for tumor necrosis factor (TNF)-related apoptosis-inducing ligand [2]) belongs to the TNF family and activates apoptosis in tumor cells. Three closely related receptors bind Apo2L: DR4 and DR5, which contain cytoplasmic death domains and signal apoptosis, and DcR1, a decoy receptor that lacks a cytoplasmic tail and inhibits Apo2L function [3-5]. By cross-hybridization with DcR1, we have identified a fourth Apo2L receptor, which contains a cytoplasmic region with a truncated death domain. We subsequently named this protein decoy receptor 2 (DcR2). The DcR2 gene mapped to human chromosome 8p21, as did the genes encoding DR4, DR5 and DcR1. A single DcR2 mRNA transcript showed a unique expression pattern in human tissues and was particularly abundant in fetal liver and adult testis. Upon overexpression, DcR2 did not activate apoptosis or nuclear factor-kappaB; however, it substantially reduced cellular sensitivity to Apo2L-induced apoptosis. These results suggest that DcR2 functions as an inhibitory Apo2L receptor.
The tumor necrosis factor (TNF) cytokine family regulates development and function of the immune system [1]. TNF is expressed primarily by activated lymphocytes and macrophages and induces gene transcription or apoptosis in target cells [2,3]. We have identified a novel relative of TNF that binds to the recently discovered, death-domain-containing receptor called Apo3 [4] (also known as DR3, WSL-1, TRAMP or LARD [5-9]). The Apo3 ligand (Apo3L) is a 249 amino-acid, type II transmembrane protein. The extracellular sequence of Apo3L shows highest identity to that of TNF. We detected Apo3L mRNA in many human tissues and mapped its encoding gene to chromosome 17p13, near the p53 tumor-suppressor gene. Soluble Apo3L induced apoptosis and nuclear factor kappaB (NF-kappaB) activation in human cell lines. Caspase inhibitors blocked apoptosis induction by Apo3L, as did a dominant-negative mutant of the cell death adaptor protein Fas-associated death domain protein (FADD/MORT1), which is critical for apoptosis induction by TNF [3]. Dominant-negative mutants of several factors that play a key role in NF-kappaB induction by TNF [10] inhibited NF-kappaB activation by Apo3L. Thus, Apo3L has overlapping signaling functions with TNF, but displays a much wider tissue distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.