Bumble bees (Bombus) are vitally important pollinators of wild plants and agricultural crops worldwide. Fragmentary observations, however, have suggested population declines in several North American species. Despite rising concern over these observations in the United States, highlighted in a recent National Academy of Sciences report, a national assessment of the geographic scope and possible causal factors of bumble bee decline is lacking. Here, we report results of a 3-y interdisciplinary study of changing distributions, population genetic structure, and levels of pathogen infection in bumble bee populations across the United States. We compare current and historical distributions of eight species, compiling a database of >73,000 museum records for comparison with data from intensive nationwide surveys of >16,000 specimens. We show that the relative abundances of four species have declined by up to 96% and that their surveyed geographic ranges have contracted by 23-87%, some within the last 20 y. We also show that declining populations have significantly higher infection levels of the microsporidian pathogen Nosema bombi and lower genetic diversity compared with co-occurring populations of the stable (nondeclining) species. Higher pathogen prevalence and reduced genetic diversity are, thus, realistic predictors of these alarming patterns of decline in North America, although cause and effect remain uncertain.
The increasing evidence for population declines in bumble bee (Bombus) species worldwide has accelerated research efforts to explain losses in these important pollinators. In North America, a number of once widespread Bombus species have suffered serious reductions in range and abundance, although other species remain healthy. To examine whether declining and stable species exhibit different levels of genetic diversity or population fragmentation, we used microsatellite markers to genotype populations sampled across the geographic distributions of two declining (Bombus occidentalis and Bombus pensylvanicus) and four stable (Bombus bifarius; Bombus vosnesenskii; Bombus impatiens and Bombus bimaculatus) Bombus species. Populations of declining species generally have reduced levels of genetic diversity throughout their range compared to codistributed stable species. Genetic diversity can be affected by overall range size and degree of isolation of local populations, potentially confounding comparisons among species in some cases. We find no evidence for consistent differences in gene flow among stable and declining species, with all species exhibiting weak genetic differentiation over large distances (e.g. >1000 km). Populations on islands and at high elevations experience relatively strong genetic drift, suggesting that some conditions lead to genetic isolation in otherwise weakly differentiated species. B. occidentalis and B. bifarius exhibit stronger genetic differentiation than the other species, indicating greater phylogeographic structure consistent with their broader geographic distributions across topographically complex regions of western North America. Screening genetic diversity in North American Bombus should prove useful for identifying species that warrant monitoring, and developing management strategies that promote high levels of gene flow will be a key component in efforts to maintain healthy populations.
Identifying drivers of dispersal limitation and genetic differentiation is a key goal in biogeography. We examine patterns of population connectivity and genetic diversity using restriction site-associated DNA sequencing (RADseq) in two bumble bee species, Bombus vosnesenskii and Bombus bifarius, across latitude and altitude in mountain ranges from California, Oregon and Washington, U.S.A. Bombus vosnesenskii, which occurs across a broader elevational range at most latitudes, exhibits little population structure while B. bifarius, which occupies a relatively narrow higher elevation niche across most latitudes, exhibits much stronger population differentiation, although gene flow in both species is best explained by isolation with environmental niche resistance. A relationship between elevational habitat breadth and genetic diversity is also apparent, with B. vosnesenskii exhibiting relatively consistent levels of genetic diversity across its range, while B. bifarius has reduced genetic diversity at low latitudes, where it is restricted to high-elevation habitat. The results of this study highlight the importance of the intersect between elevational range and habitat suitability in influencing population connectivity and suggest that future climate warming will have a fragmenting effect even on populations that are presently well connected, as they track their thermal niches upward in montane systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.