Summary/abstract Recent analysis of single-cell transcriptomic data has revealed a surprising organization of the transcriptional variability pervasive across individual neurons. In response to distinct combinations of synaptic input-type, a new organization of neuronal subtypes emerged based on transcriptional states that were aligned along a gradient of correlated gene expression. Individual neurons traverse across these transcriptional states in response to cellular inputs. However, the regulatory network interactions driving these changes remain unclear. Here we present a novel fuzzy logic-based approach to infer quantitative gene regulatory network models from highly variable single-cell gene expression data. Our approach involves developing an a priori regulatory network that is then trained against in vivo single-cell gene expression data in order to identify causal gene interactions and corresponding quantitative model parameters. Simulations of the inferred gene regulatory network response to experimentally observed stimuli levels mirrored the pattern and quantitative range of gene expression across individual neurons remarkably well. In addition, the network identification results revealed that distinct regulatory interactions, coupled with differences in the regulatory network stimuli, drive the variable gene expression patterns observed across the neuronal subtypes. We also identified a key difference between the neuronal subtype-specific networks with respect to negative feedback regulation, with the catecholaminergic subtype network lacking such interactions. Furthermore, by varying regulatory network stimuli over a wide range, we identified several cases in which divergent neuronal subtypes could be driven towards similar transcriptional states by distinct stimuli operating on subtype-specific regulatory networks. Based on these results, we conclude that heterogeneous single-cell gene expression profiles should be interpreted through a regulatory network modeling perspective in order to separate the contributions of network interactions from those of cellular inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.