Commonly used methods to assess the severity of essential tremor (ET) are based on clinical observation and lack objectivity. This study proposes the use of wearable accelerometer sensors for the quantitative assessment of ET. Acceleration data was recorded by inertial measurement unit (IMU) sensors during sketching of Archimedes spirals in 17 ET participants and 18 healthy controls. IMUs were placed at three points (dorsum of hand, posterior forearm, posterior upper arm) of each participant’s dominant arm. Movement disorder neurologists who were blinded to clinical information scored ET patients on the Fahn–Tolosa–Marin rating scale (FTM) and conducted phenotyping according to the recent Consensus Statement on the Classification of Tremors. The ratio of power spectral density of acceleration data in 4–12 Hz to 0.5–4 Hz bands and the total duration of the action were inputs to a support vector machine that was trained to classify the ET subtype. Regression analysis was performed to determine the relationship of acceleration and temporal data with the FTM scores. The results show that the sensor located on the forearm had the best classification and regression results, with accuracy of 85.71% for binary classification of ET versus control. There was a moderate to good correlation (r2 = 0.561) between FTM and a combination of power spectral density ratio and task time. However, the system could not accurately differentiate ET phenotypes according to the Consensus classification scheme. Potential applications of machine-based assessment of ET using wearable sensors include clinical trials and remote monitoring of patients.
Deep brain stimulation (DBS) of the thalamus is an effective treatment for medically refractory essential, dystonic and Parkinson's tremor. It may also provide benefit in less common tremor syndromes including, post-traumatic, cerebellar, Holmes, neuropathic and orthostatic tremor. The long-term benefit of DBS in essential and dystonic tremor (ET/DT) often wanes over time, a phenomena referred to as stimulation “tolerance” or “habituation”. While habituation is generally accepted to exist, it remains controversial. Attempts to quantify habituation have revealed conflicting reports. Placebo effects, loss of micro-lesional effect, disease related progression, suboptimal stimulation and stimulation related side-effects may all contribute to the loss of sustained long-term therapeutic effect. Habituation often presents as substantial loss of initial DBS benefit occurring as early as a few months after initial stimulation; a complex and feared issue when faced in the setting of optimal electrode placement. Simply increasing stimulation current tends only to propagate tremor severity and induce stimulation related side effects. The report by Paschen and colleagues of worsening tremor scores in the “On” vs. “Off” stimulation state over time, even after accounting for “rebound” tremor, supports the concept of habituation. However, these findings have not been consistent across all studies. Chronic high intensity stimulation has been hypothesized to induce detrimental plastic effects on tremor networks, with some lines of evidence that DT and ET may be more susceptible than Parkinson's tremor to habituation. However, Tsuboi and colleague's recent longitudinal follow-up in dystonic and “pure” essential tremor suggests otherwise. Alternatively, post-mortem findings support a biological adaption to stimulation. The prevalence and etiology of habituation is still not fully understood and management remains difficult. A recent study reported that alternating thalamic stimulation parameters at weekly intervals provided improved stability of tremor control consistent with reduced habituation. In this article the available evidence for habituation after DBS for tremor syndromes is reviewed; including its prevalence, time-course, possible mechanisms; along with expected long-term outcomes for tremor and factors that may assist in predicting, preventing and managing habituation.
Essential tremor (ET) is diagnosed and monitored by movement disorder specialists based on clinical observations. While many ET cases are benign, some require pharmacological and surgical management, and there is a need for tools to assist clinicians in making informed decisions. This work aimed to develop a computerized technique to detect the presence and severity of ET. A set of 6 writing and sketching tasks were performed by 39 subjects on a digital tablet. The position and pressure of contact during the sketching were recorded and analyzed to obtain the dynamics of drawing. ET patients were scored on the Fahn-Tolosa-Marin Tremor Rating Scale by blinded movement disorder neurologists, and then separated into two groups: moderate and severe ET. Drawing tasks were more effective than writing tasks in distinguishing the groups, with drawing horizontal and vertical lines being the most sensitive. A new set of composite index feature was found to be most suitable in separating the three groups, with a Spearman correlation coefficient of 0.72. The technique shows significant differences between controls, patients with moderate tremor and those with severe tremor, with an accuracy of 87.2%. Our computerized analysis significantly outperformed non-specialist clinicians in differentiating ET from control. We conclude that computerized analysis of the dynamics of sketching horizontal and vertical lines is a suitable method to assess the presence and severity of ET. INDEX TERMSComputerized diagnosis, essential tremor, feature selection, task selection, writing and sketching task. MOHAMMOD ABDUL MOTIN (Member, IEEE) received the B.Sc.Eng. and M.Sc.Eng.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.