Background No network meta‐analysis has considered the relative efficacy of cilostazol, home exercise therapy, supervised exercise therapy (SET), endovascular revascularization (ER), and ER plus SET (ER+SET) in improving maximum walking distance (MWD) over short‐ (<1 year), moderate‐ (1 to <2 years), and long‐term (≥2 years) follow‐up in people with intermittent claudication. Methods and Results A systematic literature search was performed to identify randomized controlled trials testing 1 or more of these 5 treatments according to Preferred Reporting Items for Systematic Review and Meta‐Analysis guidelines. The primary outcome was improvement in MWD assessed by a standardized treadmill test. Secondary outcomes were adverse events and health‐related quality of life. Network meta‐analysis was performed using the gemtc R statistical package. The Cochrane collaborative tool was used to assess risk of bias. Forty‐six trials involving 4256 patients were included. At short‐term follow‐up, home exercise therapy (mean difference [MD], 89.4 m; 95% credible interval [CrI], 20.9–157.7), SET (MD, 186.8 m; 95% CrI, 136.4–237.6), and ER+SET (MD, 326.3 m; 95% CrI, 222.6–430.6), but not ER (MD, 82.5 m; 95% CrI, −2.4 to 168.2) and cilostazol (MD, 71.1 m; 95% CrI, −24.6 to 167.9), significantly improved MWD (in meters) compared with controls. At moderate‐term follow‐up, SET (MD, 201.1; 95% CrI, 89.8–318.3) and ER+SET (MD, 368.5; 95% CrI, 195.3–546.9), but not home exercise therapy (MD, 99.4; 95% CrI, −174.0 to 374.9) or ER (MD, 84.2; 95% CrI, −35.3 to 206.4), significantly improved MWD (in meters) compared to controls. At long‐term follow‐up, none of the tested treatments significantly improved MWD compared to controls. Adverse events and quality of life were reported inconsistently and could not be meta‐analyzed. Risk of bias was low, moderate, and high in 4, 24, and 18 trials respectively. Conclusions This network meta‐analysis suggested that SET and ER+SET are effective at improving MWD over the moderate term (<2 year) but not beyond this. Durable treatments for intermittent claudication are needed.
Objective: There are no current effective abdominal aortic aneurysm (AAA) drug therapies. An important limitation of most preclinical studies is that they test the effect of drugs on AAA formation rather than AAA progression. The aim of this study was to systematically review AAA mouse model studies that have tested the effect of interventions in limiting the progression of preestablished AAA. Approach and Results: The literature search identified 35 studies meeting eligibility, and 30 (n=935 mice) contributed to the meta-analyses. AAAs were induced with angiotensin II (n=745 mice), calcium chloride (n=91 mice), or elastase (n=99 mice). Anti-inflammatory drugs (standardized mean difference [SMD], 1.62 [95% CI, 0.93–2.30]), protease inhibitors (SMD, 1.23 [95% CI, 0.52–1.95]), stem cells (SMD, 1.64 [95% CI, 1.05–2.24]), antiplatelet or anticoagulant drugs (SMD, 0.93 [95% CI, 0.63–1.22]), and renin-angiotensin system inhibitors (SMD, 1.45 [95% CI, 0.58–2.33]) reduced AAA diameter. Interventions initiated soon after model induction commenced were more likely to reduce AAA diameter (R 2 , 16%; P =0.007). Funnel plots suggested possible publication bias. Most studies did not report blinding or sample size calculations, and the risk of bias was considered medium or high in 20 (57%) of the 35 studies. Conclusions: There is low-quality evidence that a range of drugs are effective in limiting AAA progression when administered early after AAA induction in mouse models. Some of these drugs, such as antiplatelet and renin-angiotensin system inhibitors, have been reported to be ineffective in clinical trials.
Mouse models are frequently used to study diabetes-associated ulcers, however, whether these models accurately simulate impaired wound healing has not been thoroughly investigated. This systematic review aimed to determine whether wound healing is impaired in mouse models of diabetes and assess the quality of the past research. A systematic literature search was performed of publicly available databases to identify original articles examining wound healing in mouse models of diabetes. A meta-analysis was performed to examine the effect of diabetes on wound healing rate using random effect models. A meta-regression was performed to examine the effect of diabetes duration on wound healing impairment. The quality of the included studies was also assessed using two newly developed tools. 77 studies using eight different models of diabetes within 678 non-diabetic and 720 diabetic mice were included. Meta-analysis showed that wound healing was impaired in all eight models. Meta-regression suggested that longer duration of diabetes prior to wound induction was correlated with greater degree of wound healing impairment. Pairwise comparisons suggested that non-obese diabetic mice exhibited more severe wound healing impairment compared with db/db mice, streptozotocin-induced diabetic mice or high-fat fed mice at an intermediate stage of wound healing (p<0.01). Quality assessment suggested that the prior research frequently lacked incorporation of key clinically relevant characteristics. This systematic review suggested that impaired wound healing can be simulated in many different mouse models of diabetes but these require further refinement to become more clinically relevant.
Oxytocin and its receptor are synthesised in the heart and blood vessels but effects of chronic activation of this peripheral oxytocinergic system on cardiovascular function are not known. In acute studies, systemic administration of low dose oxytocin exerted a protective, preconditioning effect in experimental models of myocardial ischemia and infarction. In this study, we investigated the effects of chronic administration of low dose oxytocin following angiotensin II-induced hypertension, cardiac hypertrophy and renal damage. Angiotensin II (40 μg/Kg/h) only, oxytocin only (20 or 100 ng/Kg/h), or angiotensin II combined with oxytocin (20 or 100 ng/Kg/h) were infused subcutaneously in adult male Sprague-Dawley rats for 28 days. At day 7, oxytocin or angiotensin-II only did not change hemodynamic parameters, but animals that received a combination of oxytocin and angiotensin-II had significantly elevated systolic, diastolic and mean arterial pressure compared to controls (P < 0.01). Hemodynamic changes were accompanied by significant left ventricular cardiac hypertrophy and renal damage at day 28 in animals treated with angiotensin II (P < 0.05) or both oxytocin and angiotensin II, compared to controls (P < 0.01). Prolonged oxytocin administration did not affect plasma concentrations of renin and atrial natriuretic peptide, but was associated with the activation of calcium-dependent protein phosphatase calcineurin, a canonical signalling mechanism in pressure overload-induced cardiovascular disease. These data demonstrate that oxytocin accelerated angiotensin-II induced hypertension and end-organ renal damage, suggesting caution should be exercised in the chronic use of oxytocin in individuals with hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.