Adrenocortical carcinoma (ACC) is a rare malignancy with an incidence worldwide of 0.7-2.0 cases/million/year. Initial staging is the most important factor in determining prognosis. If diagnosed early, surgical resection +/- adjuvant treatment can lead to five-year survival of up to 80%. However, often it is diagnosed late and in advanced disease five-year survival is <15% with a high recurrence rate even after radical surgery. The mainstay of adjuvant treatment is with the drug mitotane. Mitotane has a specific cytotoxic effect on steroidogenic cells of the adrenal cortex but despite this progression through treatment is common. Developments in genetic analysis in the form of next-generation sequencing, aided by bioinformatics, have enabled high-throughput molecular characterisation of these tumours. This, in addition to a better appreciation of the processes of physiological, homeostatic self-renewal of the adrenal cortex has furthered our understanding of the pathogenesis of this malignancy. In this review, we have detailed the pathobiology and genetic alterations in adrenocortical carcinoma through integrating current understanding of homeostasis and self-renewal in the normal adrenal cortex with molecular profiling of tumours from recent genetic analyses. Improved understanding of the mechanisms involved in self-renewal and stem cell hierarchy in normal human adrenal cortices, together with the identification of cell populations likely to be co-opted by oncogenic mutations, will enable further progress in the definition of the molecular pathways involved in the pathogenesis of ACC. The combination of these advances eventually will lead to the development of novel, effective and personalised strategies to eradicate molecularly annotated ACCs.
Delta like non-canonical Notch ligand 1 (DLK1) is a cleavable single-pass transmembrane protein and a member of the Notch/Delta/Serrate family. It is paternally expressed and belongs to a group of imprinted genes located on chromosome band 14q32 in humans and 12qF1 in mice. DLK1 is expressed in many human tissues during embryonic development but in adults expression is low and is mostly restricted to (neuro)endocrine tissues and other immature stem/progenitor cells (notably hepatoblasts). However, DLK1 is expressed at a high frequency in many common malignancies (liver, breast, brain, pancreas, colon and lung). More recently, high levels of expression have been identified in endocrine related cancers such as ovarian and adrenocortical carcinoma. There is growing evidence that DLK1 expression in cancer is associated with worse prognosis and that DLK1 may be a marker of cancer stem cells. Although the exact mechanism through which DLK1 functions is not fully understood, it is known to maintain cells in an undifferentiated phenotype and has oncogenic properties. These effects are partly exacted through interaction with the Notch signalling pathway. In this review, we have detailed the functional role of DLK1 within physiology and malignancy and posit a mechanism for how it exacts its oncogenic effects. In describing the expression of DLK1 in cancer and in healthy tissue, we have highlighted the potential for its use both as a biomarker and as a potential therapeutic target.
Sensory neurone subtypes (< or = 25 microm apparent diameter) express a variety of Na(+) channels, where expression is linked to action potential duration, and associated with differential IB4-lectin binding. We hypothesized that sensitivity to ATX-II might also discriminate neurones and report that 1 microm has negligible or small effects on action potentials in IB4 +ve, but dramatically increased action potential duration in IB4 ve, neurones. The toxin did not act on tetrodotoxin-resistant (TTX-r) Na(V)1.8 currents; discrimination was based on tetrodotoxin-sensitive (TTX-s) Na(+) channel expression. We also explored the effects of varying the holding potential on current threshold, and the effect of repetitive activation on action currents in IB4 +ve and ve neurones. IB4 +ve neurones became more excitable with depolarization over the range 100 to 20 mV, but IB4 ve neurones exhibited peak excitability near 55 mV, and were inexcitable at 20 mV. Eliciting action potentials at 2 Hz, we found that peak inward action current in IB4 +ve neurones was reduced, whereas changes in the current amplitude were negligible in most IB4 ve neurones. Our findings are consistent with relatively toxin-insensitive channels including Na(V)1.7 being expressed in IB4 +ve neurones, whereas toxin sensitivity indicates that IB4 ve neurones may express Na(V)1.1 or Na(V)1.2, or both. The retention of excitability at low membrane potentials, and the responses to repetitive stimulation are explained by the known preferential expression of Na(V)1.8 in IB4 +ve neurones, and the reduction in action current in IB4 +ve neurones with repetitive stimulation supports a novel hypothesis explaining the slowing of conduction velocity in C-fibres by the build-up of Na(+) channel inactivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.