The Eigenstate Thermalization Hypothesis (ETH) posits that the reduced density matrix for a subsystem corresponding to an excited eigenstate is "thermal." Here we expound on this hypothesis by asking: for which class of operators, local or non-local, is ETH satisfied? We show that this question is directly related to a seemingly unrelated question: is the Hamiltonian of a system encoded within a single eigenstate? We formulate a strong form of ETH where in the thermodynamic limit, the reduced density matrix of a subsystem corresponding to a pure, finite energy density eigenstate asymptotically becomes equal to the thermal reduced density matrix, as long as the subsystem size is much less than the total system size, irrespective of how large the subsystem is compared to any intrinsic length scale of the system. This allows one to access the properties of the underlying Hamiltonian at arbitrary energy densities/temperatures using just a single eigenstate. We provide support for our conjecture by performing an exact diagonalization study of a non-integrable 1D lattice quantum model with only energy conservation. In addition, we examine the case in which the subsystem size is a finite fraction of the total system size, and find that even in this case, a large class of operators continue to match their canonical expectation values. Specifically, the von Neumann entanglement entropy equals the thermal entropy as long as the subsystem is less than half the total system. We also study, both analytically and numerically, a particle number conserving model at infinite temperature which substantiates our conjectures. PACS numbers:Contents arXiv:1503.00729v2 [cond-mat.str-el]
We propose a novel quantum spin liquid state that can explain many of the intriguing experimental properties of the low-temperature phase of the organic spin liquid candidate materials κ-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2. This state of paired fermionic spinons preserves all symmetries of the system, and it has a gapless excitation spectrum with quadratic bands that touch at momentum k[over →]=0. This quadratic band touching is protected by symmetries. Using variational Monte Carlo techniques, we show that this state has highly competitive energy in the triangular lattice Heisenberg model supplemented with a realistically large ring-exchange term.
The propagation of information in non-relativistic quantum systems obeys a speed limit known as a Lieb-Robinson bound. We derive a new Lieb-Robinson bound for systems with interactions that decay with distance r as a power law, 1/r α . The bound implies an effective light cone tighter than all previous bounds. Our approach is based on a technique for approximating the time evolution of a system, which was first introduced as part of a quantum simulation algorithm by Haah et al., FOCS'18. To bound the error of the approximation, we use a known Lieb-Robinson bound that is weaker than the bound we establish. This result brings the analysis full circle, suggesting a deep connection between Lieb-Robinson bounds and digital quantum simulation. In addition to the new Lieb-Robinson bound, our analysis also gives an error bound for the Haah et al. quantum simulation algorithm when used to simulate power-law decaying interactions. In particular, we show that the gate count of the algorithm scales with the system size better than existing algorithms when α > 3D (where D is the number of dimensions).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.