In the past, studies of stratosphere-tropo-sphere exchange of mass and chemical species have mainly emphasized the synoptic-and small-scale mechanisms of exchange. This review, however, includes also the global-scale aspects of exchange, such as the transport across an isentropic surface (potential temperature about 380 K) that in the tropics lies just above the tropopause, near the 100-hPa pressure level. Such a surface divides the stratosphere into an "over-world" and an extratropical "lowermost strato-sphere" that for transport purposes need to be sharply distinguished. This approach places stratosphere-tro-posphere exchange in the framework of the general circulation and helps to clarify the roles of the different mechanisms involved and the interplay between large and small scales. The role of waves and eddies in the extratropical overworld is emphasized. There, wave-induced forces drive a kind of global-scale extratropi-cal "fluid-dynamical suction pump," which withdraws air upward and poleward from the tropical lower stratosphere and pushes it poleward and downward into the extratropical troposphere. The resulting global scale circulation drives the stratosphere away from radiative equilibrium conditions. Wave-induced forces may be considered to exert a nonlocal control, mainly downward in the extratropics but reaching laterally into the tropics, over the transport of mass across lower stratospheric isentropic surfaces. This mass transport is for many purposes a useful measure of global-scale stratosphere-troposphere exchange, especially on seasonal or longer timescales. Because the strongest wave-induced forces occur in the northern hemisphere winter season, the exchange rate is also a maximum at that season. The global exchange rate is not determined by details of near-tropopause phenomena such as penetrative cumulus convection or small-scale mixing associated with upper level fronts and cyclones. These smaller-scale processes must be considered , however, in order to understand the finer details of exchange. Moist convection appears to play an important role in the tropics in accounting for the extreme dehydration of air entering the stratosphere. Stratospheric air finds its way back into the tropo-sphere through a vast variety of irreversible eddy exchange phenomena, including tropopause folding and the formation of so-called tropical upper tropo-spheric troughs and consequent irreversible exchange. General circulation models are able to simulate the mean global-scale mass exchange and its seasonal cycle but are not able to properly resolve the tropical dehydration process. Two-dimensional (height-latitude) models commonly used for assessment of human impact on the ozone layer include representation of stratosphere-troposphere exchange that is adequate to allow reasonable simulation of photochemical processes occurring in the overworld. However, for assessing changes in the lowermost stratosphere, the strong longitudinal asymmetries in stratosphere-troposphere exchange render current two-dimensional m...
Abstract. The quasi-biennial oscillation (QBO) dominates the variability of the equatorial stratosphere (---16-50 km) and is easily seen as downward propagating easterly and westerly wind regimes, with a variable period averaging approximately 28 months. From a fluid dynamical perspective, the QBO is a fascinating example of a coherent, oscillating mean flow that is driven by propagating waves with periods unrelated to that of the resulting oscillation. Although the QBO is a tropical phenomenon, it affects the stratospheric flow from pole to pole by modulating the effects of extratropical waves. Indeed, study of the QBO is inseparable from the study of atmospheric wave motions that drive it and are modulated by it. The QBO affects variability in the mesosphere near 85 km by selectively filtering waves that propagate upward through the equatorial stratosphere, and may also affect the strength of Atlantic hurricanes.
Abstract.We describe observations of tropical stratospheric water vapor q that show clear evidence of large-scale
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.