Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models.
Auditory brainstem-evoked response (ABR) thresholds were obtained in a longitudinal study of C57BL/6J mice between 10 and 53 weeks old, with repeated testing every 2 weeks. On alternate weeks, acoustic startle reflex (ASR) amplitudes were measured, elicited by tone pips with stimulus frequencies of 3, 6, 12, and 24 kHz, and intensities from subthreshold up to 110 dB sound pressure level. The increase in ABR thresholds for 3 and 6 kHz test stimuli followed a linear time course with increasing age from 10 to 53 weeks, with a slope of about 0.7 dB/week, and for 48 kHz a second linear time course, but beginning at 10 weeks with a slope of about 2.3 dB/week. ABR thresholds for 12, 24, and 32 kHz increased after one linear segment with a 0.7 dB slope, then after a variable delay related to the test frequency, shifted to a second segment having slopes of 3-5 dB/week. Hearing loss initially reduced the ASR for all eliciting stimuli, but at about 6 months of age, the response elicited by intense 3 and 6 kHz stimuli began to increase to reach values about three times above normal, and previously subthreshold stimuli came to elicit vigorous responses seen at first only for the intense stimuli. This hyperacusis-like effect appeared in all mice but was especially pronounced in mice with more serious hearing loss. These ABR data, together with a review of histopathological data in the C57BL/6 literature, suggest that the non-frequency-specific slow time course of hearing loss results from pathology in the lateral wall of the cochlea, whereas the stimulusspecific hearing loss with a rapid time course results from hair cell loss. Delayed exaggeration of the ASR with hearing loss reveals a deficit in centrifugal inhibitory control over the afferent reflex pathways after central neural reorganization, suggesting that this mouse may provide a useful model of age-related tinnitus and associated hyperacusis.
In Experiment 1 (n = 8), the rat's ability to detect brief gaps in white noise was measured by gap-produced inhibition of an acoustic startle reflex, elicited 100 ms after the gap. After bilateral application of KCl to the cortex, gaps as long as 15 ms provided no reflex inhibition; in contrast, the inhibitory threshold was between 2 and 4 ms in the saline control condition. In Experiment 2 (n = 13), noise pulses of 40, 50, or 70 dB were presented 20-500 ms before the startle stimulus, and in Experiment 3 (n = 5) noise offsets occurred so that the startle stimulus was presented at the end of a 2-30-ms gap. Noise pulses and offsets both inhibited reflex expression equally in saline- and KCl-treated animals. Differences between the normal (saline) functions of noise offsets and gaps suggest additional sensory processing with the longer lead time. The loss of gap sensitivity after KCl application indicates that gap processing, unlike pulses and offsets, depends on cortical mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.