DNA polymerases copy DNA templates with remarkably high fidelity, checking for correct base-pair formation both at nucleotide insertion and at subsequent DNA extension steps. Despite extensive biochemical, genetic and structural studies, the mechanism by which nucleotides are correctly incorporated is not known. Here we present high-resolution crystal structures of a thermostable bacterial (Bacillus stearothermophilus) DNA polymerase I large fragments with DNA primer templates bound productively at the polymerase active site. The active site retains catalytic activity, allowing direct observation of the products of several rounds of nucleotide incorporation. The polymerase also retains its ability to discriminate between correct and incorrectly paired nucleotides in the crystal. Comparison of the structures of successively translocated complexes allows the structural features for the sequence-independent molecular recognition of correctly formed base pairs to be deduced unambiguously. These include extensive interactions with the first four to five base pairs in the minor groove, location of the terminal base pair in a pocket of excellent steric complementarity favouring correct base-pair formation, and a conformational switch from B-form to underwound A-form DNA at the polymerase active site.
The KDM5 family of histone demethylases catalyzes the demethylation of histone H3 on lysine 4 (H3K4) and is required for the survival of drug-tolerant persister cancer cells (DTPs). Here we report the discovery and characterization of the specific KDM5 inhibitor CPI-455. The crystal structure of KDM5A revealed the mechanism of inhibition of CPI-455 as well as the topological arrangements of protein domains that influence substrate binding. CPI-455 mediated KDM5 inhibition, elevated global levels of H3K4 trimethylation (H3K4me3) and decreased the number of DTPs in multiple cancer cell line models treated with standard chemotherapy or targeted agents. These findings show that pretreatment of cancer cells with a KDM5-specific inhibitor results in the ablation of a subpopulation of cancer cells that can serve as the founders for therapeutic relapse.
A variety of drugs inhibit the conversion of arachidonic acid to prostaglandin G 2 by the cyclooxygenase (COX) activity of prostaglandin endoperoxide synthases. Several modes of inhibitor binding in the COX active site have been described including ion pairing of carboxylic acid containing inhibitors with Arg-120 of COX-1 and COX-2 and insertion of arylsulfonamides and sulfones into the COX-2 side pocket. Recent crystallographic evidence suggests that Tyr-385 and Ser-530 chelate polar or negatively charged groups in arachidonic acid and aspirin. We tested the generality of this binding mode by analyzing the action of a series of COX inhibitors against site-directed mutants of COX-2 bearing changes in Arg-120, Tyr-355, Tyr-348, and Ser-530. Interestingly, diclofenac inhibition was unaffected by the mutation of Arg-120 to alanine but was dramatically attenuated by the S530A mutation. Determination of the crystal structure of a complex of diclofenac with murine COX-2 demonstrates that diclofenac binds to COX-2 in an inverted conformation with its carboxylate group hydrogen-bonded to Tyr-385 and Ser-530. This finding represents the first experimental demonstration that the carboxylate group of an acidic non-steroidal anti-inflammatory drug can bind to a COX enzyme in an orientation that precludes the formation of a salt bridge with Arg-120. Mutagenesis experiments suggest Ser-530 is also important in time-dependent inhibition by nimesulide and piroxicam.The cyclooxygenase (COX) 1 activity of prostaglandin endoperoxide synthase catalyzes the incorporation of two molecules of O 2 into arachidonic acid to yield the hydroperoxy endoperoxide, prostaglandin G 2 (PGG 2 ) (1, 2). PGG 2 diffuses from the cyclooxygenase active site and binds at the peroxidase active site where it is reduced to the hydroxy endoperoxide, PGH 2 , the precursor to prostaglandins, thromboxane, and prostacyclin (3). Two COX isoforms exist that differ in expression pattern, mode of regulation, and biological function (4). COX-1 is generally considered the homeostatic form of the enzyme as it is constitutively expressed in a number of tissues, whereas COX-2 is sensitive to induction in many tissues by a broad range of physiological and pathological stimuli (5). Inhibition of COX enzymes by non-steroidal anti-inflammatory drugs (NSAIDs) accounts for their anti-inflammatory and analgesic activities, as well as their gastrointestinal toxicity (6). Development of selective COX-2 inhibitors has reduced the gastrointestinal liability (7).Structural and functional analysis is providing an increasingly detailed picture of the molecular determinants of COXsubstrate and COX-inhibitor interactions (3). COX-1 and COX-2 have very similar structures characterized by a membrane-binding domain comprised of amphipathic helices forming the entrance to a long hydrophobic channel (8 -10). This channel leads deep inside the protein, and at its upper end comprises the cyclooxygenase active site. The cyclooxygenase active site is separated from the opening near the membran...
Cyclooxygenases are bifunctional enzymes that catalyse the first committed step in the synthesis of prostaglandins, thromboxanes and other eicosanoids. The two known cyclooxygenases isoforms share a high degree of amino-acid sequence similarity, structural topology and an identical catalytic mechanism. Cyclooxygenase enzymes catalyse two sequential reactions in spatially distinct, but mechanistically coupled active sites. The initial cyclooxygenase reaction converts arachidonic acid (which is achiral) to prostaglandin G2 (which has five chiral centres). The subsequent peroxidase reaction reduces prostaglandin G2 to prostaglandin H2. Here we report the co-crystal structures of murine apo-cyclooxygenase-2 in complex with arachidonic acid and prostaglandin. These structures suggest the molecular basis for the stereospecificity of prostaglandin G2 synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.