The amount of water that can be stored in soil and evaporated or actively used by plants is a key parameter in hydrologic models and is important for crop and pasture production. Often, the active soil moisture store is estimated from laboratory measurements of soil properties. An alternative approach, described in this paper, is to estimate the extractable soil moisture capacity from direct measurements of soil moisture content in the field. A time series of soil moisture values, over the depth of the soil, shows the actual changes in water content. The difference between the wettest and driest profiles is an estimate of the extractable soil moisture storage. We have gathered data on extractable soil water capacity for 180 locations over Australia and have compared our values with published results from the Atlas of Australian Soils (AAS), derived from profile descriptions and pedo-transfer functions. Our results show that data from the AAS provide a useful lower bound for measured extractable soil moisture storage, but of the sites examined, 42% had values >2 times those in the AAS. In part, this was because total soil depths were underestimated in the AAS results compared with the active depths from the measured data. Active depths are strongly related to vegetation type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.