Three-component hybrid nanoparticle heterotrimers, which are important multifunctional constructs that underpin diverse applications, are commonly synthesized by growing a third domain off of a two-component heterodimer seed. However, because heterodimer seeds expose two distinct surfaces that often can both support nucleation and growth, selectively targeting one particular surface is critical for exclusively accessing a desired configuration. Understanding and controlling nucleation and growth therefore enables the rational formation of high-order hybrid nanoparticles. Here, we report an in-depth microscopic investigation that probes the chemoselective addition of Ag to Pt-Fe3O4 heterodimer seeds to form Ag-Pt-Fe3O4 heterotrimers. We find that the formation of the Ag-Pt-Fe3O4 heterotrimers initiates with indiscriminate Ag nucleation onto both the Pt and Fe3O4 surfaces of Pt-Fe3O4, followed by surface diffusion and coalescence of Ag onto the Pt surface to form the Ag-Pt-Fe3O4 product. Control experiments reveal that the size of the Ag domain of Ag-Pt-Fe3O4 correlates with the overall surface area of the Pt-Fe3O4 seeds, which is consistent with the coalescence of Ag through a surface-mediated process and can also be exploited to tune the size of the Ag domain. Additionally, we observe that small iron oxide islands on the Pt surface of the Pt-Fe3O4 seeds, deposited during the formation of Pt-Fe3O4, define the morphology of the Ag domain, which in turn influences its optical properties. These results provide unprecedented microscopic insights into the pathway by which Ag-Pt-Fe3O4 heterotrimer nanoparticles form and uncover new design guidelines for the synthesis of high-order hybrid nanoparticles with precisely targeted morphologies and properties.
Colloidal hybrid nanoparticles integrate two or more nanocrystal domains into a single architecture that can have properties not found in, or enhanced relative to those of, the individual components. These hybrid nanomaterials are typically constructed using multistep seeded-growth reaction sequences, which are conceptually analogous to the total synthesis approaches used in molecular synthesis. Here, we discuss in detail the synthetic protocols that lead to the formation of three-component Ag−Pt−Fe 3 O 4 and Au−Pt−Fe 3 O 4 heterotrimers. These instructive model systems highlight the important synthetic details that underpin successful hybrid nanoparticle reactions. We provide detailed, step-by-step protocols for generating these materials, focusing on describing and rationalizing the key reaction parameters that need to be rigorously controlled to minimize unwanted nanoparticle byproducts. The importance of comprehensive analysis using a suite of materials characterization tools is highlighted, as such efforts are useful for diagnosing subtle chemical and morphological features that can lead to synthetic bottlenecks throughout the course of the reaction sequences. Finally, we offer strategies for circumventing these commonly encountered problems as well as insights that can lead to increased hybrid nanoparticle yields and improved sample-to-sample reproducibility. Although this work specifically details the synthesis of Ag−Pt−Fe 3 O 4 and Au−Pt−Fe 3 O 4 heterotrimers, these synthetic strategies and protocol guidelines are generally applicable to many other hybrid nanoparticle systems.
Conversion of CO2 to value-added chemicals and fuels is a potentially valuable route for renewable energy storage and a future CO2-neutral economy. The first step is CO2 conversion to CO...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.