Vacancy-ordered double perovskites of the general formula A2BX6 are a family of perovskite derivatives composed of a face-centered lattice of nearly isolated [BX6] units with A-site cations occupying the cuboctahedral voids. Despite the presence of isolated octahedral units, the close-packed iodide lattice provides significant electronic dispersion, such that Cs2SnI6 has recently been explored for applications in photovoltaic devices. To elucidate the structure-property relationships of these materials, we have synthesized solid-solution Cs2Sn1-xTexI6. However, even though tellurium substitution increases electronic dispersion via closer I-I contact distances, the substitution experimentally yields insulating behavior from a significant decrease in carrier concentration and mobility. Density functional calculations of native defects in Cs2SnI6 reveal that iodine vacancies exhibit a low enthalpy of formation, and that the defect energy level is a shallow donor to the conduction band rendering the material tolerant to these defect states. The increased covalency of Te-I bonding renders the formation of iodine vacancy states unfavorable and is responsible for the reduction in conductivity upon Te substitution. Additionally, Cs2TeI6 is intolerant to the formation of these defects, because the defect level occurs deep within the band gap and thus localizes potential mobile charge carriers. In these vacancy-ordered double perovskites, the close-packed lattice of iodine provides significant electronic dispersion, while the interaction of the B- and X-site ions dictates the properties as they pertain to electronic structure and defect tolerance. This simplified perspective based on extensive experimental and theoretical analysis provides a platform from which to understand structure-property relationships in functional perovskite halides.
Two-dimensional perovskites have emerged as more intrinsically stable materials for solar cells. Chemical tuning of spacer organic cations has attracted great interest due to their additional functionalities. However, how the chemical nature of the organic cations affects the properties of two-dimensional perovskites and devices is rarely reported. Here we demonstrate that the selection of spacer cations (i.e., selective fluorination of phenethylammonium) affects the film properties of two-dimensional perovskites, leading to different device performance of two-dimensional perovskite solar cells (average n = 4). Structural analysis reveals that different packing arrangements and orientational disorder of the spacer cations result in orientational degeneracy and different formation energies, largely explaining the difference in film properties. This work provides key missing information on how spacer cations exert influence on desirable electronic properties and device performance of two-dimensional perovskites via the weak and cooperative interactions of these cations in the crystal lattice.
Halide perovskite semiconductors such as methylammonium lead iodide (CH 3 NH 3 PbI 3) have achieved great success in photovoltaic devices, yet concerns surrounding toxicity of lead and material stability have motivated the field to pursue alternative perovskite compositions and structures. Vacancy-ordered double perovskites are a defect-ordered variant of the perovskite structure characterized by an antifluorite arrangement of isolated octahedral units bridged by A-site cations. In this perspective, we focus upon the structure-dynamics-property relationships in vacancy-ordered double perovskite semiconductors as they pertain to applications in photovoltaics, and propose avenues of future study within the context of the broader 1 perovskite halide literature. We describe the compositional and structural motifs that dictate the optical gaps and charge transport behavior and discuss the implications of charge ordering, lattice dynamics, and organic-inorganic coupling upon the properties of these materials. The design principles we elucidate here represent a first step towards extending our understanding of perovskite functionality to defect-ordered perovskites.
. By doing so, first order The resulting magnetic phase diagram of LiZn 2 Mo 3 O 8 is shown in figure 2d. Near room temperature, the system is paramagnetic and the spins thermally randomize. Cooling below the condensation temperature (T ~ 96 K), two-thirds of the spins form a condensed valence bond state. The remaining one-third spins are still paramagnetic and interacting antiferromagnetically until lower temperatures, at which point they lose entropy in a yet-to-be determined manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.