Summary
While structural symmetry is a prevailing feature of homo-oligomeric proteins, asymmetry provides unique mechanistic opportunities. We present the crystal structure of full-length TRAP1, the mitochondrial Hsp90 molecular chaperone, in a catalytically active closed state. The TRAP1 homodimer adopts a distinct, asymmetric conformation, where one protomer is reconfigured via a helix swap at the Middle:C-terminal Domain (MD:CTD) interface. Importantly, this interface plays a critical role in client binding. Solution methods validate the asymmetry and show extension to Hsp90 homologs. Point mutations that disrupt unique contacts at each MD:CTD interface reduce catalytic activity, substrate binding, and demonstrate that each protomer needs access to both conformations. Crystallographic data on a dimeric NTD:MD fragment suggests that asymmetry arises from strain induced by simultaneous NTD and CTD dimerization. The observed asymmetry provides the potential for an additional step in the ATPase cycle, allowing sequential ATP hydrolysis steps to drive both client remodeling and client release.
Nuclear pore complexes (NPCs) perforate the nuclear envelope and represent the exclusive passageway into and out of the nucleus of the eukaryotic cell. Apart from their essential transport function, components of the NPC have important, direct roles in nuclear organization and in gene regulation. Due to its central role in cell biology, it is of considerable interest to determine the NPC structure at atomic resolution. The complexity of these large, 40-60 MDa protein assemblies has for decades limited such structural studies. More recently, exploiting the intrinsic modularity of the NPC, structural biologists are making progress toward understanding this nanomachine in molecular detail. Structures of building blocks of the stable, architectural scaffold of the NPC have been solved, and distinct models for their assembly proposed. Here we review the status of the field and lay out the challenges and the next steps toward a full understanding of the NPC at atomic resolution.
We report the discovery of a new potent allosteric effector of sickle cell hemoglobin, GBT440 (), that increases the affinity of hemoglobin for oxygen and consequently inhibits its polymerization when subjected to hypoxic conditions. Unlike earlier allosteric activators that bind covalently to hemoglobin in a 2:1 stoichiometry, binds with a 1:1 stoichiometry. Compound is orally bioavailable and partitions highly and favorably into the red blood cell with a RBC/plasma ratio of ∼150. This partitioning onto the target protein is anticipated to allow therapeutic concentrations to be achieved in the red blood cell at low plasma concentrations. GBT440 () is in Phase 3 clinical trials for the treatment of sickle cell disease (NCT03036813).
Hsp90 is a conserved chaperone that facilitates protein homeostasis. Our crystal
structure of the mitochondrial Hsp90, TRAP1, revealed an extension of the N-terminal
β-strand previously shown to cross between protomers in the closed state. In
this study, we address the regulatory function of this extension or
‘strap’ and demonstrate its responsibility for an unusual temperature
dependence in ATPase rates. This dependence is a consequence of a thermally sensitive
kinetic barrier between the apo ‘open’ and ATP-bound
‘closed’ conformations. The strap stabilizes the closed state through
trans-protomer interactions. Displacement of cis-protomer contacts from the apo state
is rate-limiting for closure and ATP hydrolysis. Strap release is coupled to rotation
of the N-terminal domain and dynamics of the nucleotide binding pocket lid. The strap
is conserved in higher eukaryotes but absent from yeast and prokaryotes suggesting
its role as a thermal and kinetic regulator, adapting Hsp90s to the demands of unique
cellular and organismal environments.DOI:
http://dx.doi.org/10.7554/eLife.03487.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.