Incubating birds must trade-off leaving the nest to forage with staying on the nest to maintain optimal temperatures for developing embryos. This trade-off is expressed through incubation behavior, which can be heavily influenced by climate, food availability, attentiveness of their mates, and nest predation risk. Comparative studies across species have shown that incubation behavior varies across latitude, but few studies have explored how incubation behavior varies across sites within species. We might expect incubation behavior to be flexible and respond to local environmental challenges; alternatively, behavior may be relatively fixed and vary little across a species’ range. We explored four incubation behaviors (male feeding rate, female off-bout duration, female off-bout frequency, and the proportion of time incubating females spent on the nest) in a widespread songbird, the yellow warbler ( Setophaga petechia ), breeding at a temperate and subarctic site. As temperatures warmed at both sites, males fed females less often, and as male feeding rates decreased, off-bout durations and frequencies increased causing the proportion of time on the nest to decrease. While incubation behaviors changed in similar ways between sites, off-bout durations shortened with increasing male feeding rates most strongly at the temperate site. Overall, these results show flexibility in incubation behaviors in response to different environmental cues, which likely minimize costs associated with provisioning incubating parents and maintaining warm nest temperatures, and suggests that male feeding may be especially important for breeding in cold regions.
Despite much research on mimicry, little is known about the ecology of dynamic mimetic signals involving mimicry of multiple species. Some of the most conspicuous examples of phenotypically plastic mimicry are produced by oscine passerines, where vocal production learning enables some species to mimic multiple models and flexibly adjust what they mimic and when. While singing from a perch, male superb lyrebirds (Menura novaehollandiae) accurately imitate multiple songs and calls of over 20 species of bird. However, at key moments within their multimodal displays performed on display arenas on the forest floor, males mimic a small number of mobbing-alarm calls creating the acoustic illusion of a mixed-species mobbing flock ('D-song'). Using observations from camera footage and a field-based playback experiment, we tested six hypotheses for alarm call model selection within D-song. Mimicked species were remarkably invariant, with 79% of D-song made up of imitations of just three different bird species. Males did not mimic the most common species in their general environment, but neither did they mimic rare species. Instead, males imitated the mobbing-alarm calls of heterospecific birds that foraged on or near the forest floor. Indeed, males primarily mimicked the alarm calls of heterospecific species that foraged alongside lyrebirds and were likely to appear together in experimentally-induced, terrestrial mobbing flocks. These findings support the hypothesis that males mimic a cue of a terrestrial predatory threat to lyrebirds, most likely to exploit the antipredator behaviour of female lyrebirds. Our study illustrates the importance of investigating the drivers of model selection in dynamic multi-model mimicry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.