The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.
Coenagrion mercuriale (Charpentier) (Odonata: Zygoptera) is one of Europe's most threatened damselflies and is listed in the European Habitats directive. We combined an intensive mark-release-recapture (MRR) study with a microsatellite-based genetic analysis for C. mercuriale from the Itchen Valley, UK, as part of an effort to understand the dispersal characteristics of this protected species. MRR data indicate that adult damselflies are highly sedentary, with only a low frequency of interpatch movement that is predominantly to neighbouring sites. This restricted dispersal leads to significant genetic differentiation throughout most of the Itchen Valley, except between areas of continuous habitat, and isolation by distance (IBD), even though the core populations are separated by less than 10 km. An urban area separating some sites had a strong effect on the spatial genetic structure. Average pairwise relatedness between individual damselflies is positive at short distances, reflecting fine-scale genetic clustering and IBD both within- and between-habitat patches. Damselflies from a fragmented habitat have higher average kinship than those from a large continuous population, probably because of poorer dispersal and localized breeding in the former. Although indirect estimates of gene flow must be interpreted with caution, it is encouraging that our results indicate that the spatial pattern of genetic variation matches closely with that expected from direct observations of movement. These data are further discussed with respect to possible barriers to dispersal within the study site and the ecology and conservation of C. mercuriale. To our knowledge, this is the first report of fine-scale genetic structuring in any zygopteran species.
Summary 1.Coenagrion mercuriale is one of Europe's rarest and most threatened damselflies. It is listed in the European Community (EC) Habitats and Species Directive and is the only odonate currently given priority status in the UK Biodiversity Action Plan. Information regarding patterns of movement and dispersal in this species is required to guide conservation and management programmes. Management is currently geared towards habitat restoration of isolated subpopulations, with little attention paid to the metapopulation and landscape context. 2. A multisite mark-release-recapture project was carried out in the valley of the River Itchen in southern England to determine the extent of movement and the factors affecting movement of mature adults of this endangered damselfly. A total of 8708 individuals was marked. 3. The species was found to be extremely sedentary, with dispersal limited to an area of contiguous habitat. The median net lifetime movement was 31·9 m and 66% of individuals moved less than 50 m in their lifetime. Movements of greater than 500 m were rare and the longest recorded movement was 1·79 km. This makes it the most sedentary odonate that has been studied in the UK. 4. The highest recapture rates and the lowest movement distances were recorded at the most isolated site. Time between capture and recapture, and day in season had an effect on movement, and individuals travelled further on their first than on subsequent moves. There was no consistent effect of age or sex on distance moved. 5. There was strong evidence for inverse density-dependent movement, with individuals moving further in low-density than high-density populations. This is the first time that inverse density-dependent movement has, to our knowledge, been observed in a natural population of odonates. 6. Synthesis and applications. Coenagrion mercuriale , along with many other invertebrate species of conservation concern, lives in a management-dependent mid-successional habitat. However, the species is highly sedentary. Furthermore, patterns of movement and dispersal are strongly affected by landscape structure and population density. This means that it is unable to recolonize isolated sites and requires 'stepping stone' habitats to improve its chances of survival in the medium to long term. Suitable habitat management between sites that are beyond the dispersal distance of individuals can be used to connect or reconnect populations. Within existing sites only small sections of habitat should be managed in any one year and new areas should be created close to existing populations. The long-term persistence of C. mercuriale and other invertebrate species requires a landscape approach to management, with connectivity an important part of management planning. It is clear that carefully conducted studies of movement and dispersal are key components in guiding invertebrate conservation strategies.
Aim Urbanization is a major driver of global land‐use change, substantially modifying patterns of biodiversity. Managing these impacts has become a conservation priority. The creation and maintenance of greenways, such as river corridors, is frequently promoted as a strategy for mitigating habitat fragmentation in urban areas by bringing semi‐natural habitat cover into city centres. However, there is little evidence to support this assertion. Here, we examine whether riparian zones maintain semi‐natural habitat cover in urban areas and how species richness varies along such zones. Location Sheffield, Northern England. Methods Multiple taxonomic groups (birds, butterflies, plants) were surveyed at 105 sites spanning seven riparian corridors that transect the study system. For all groups, we model the relationships between species richness and environmental variables pertinent to an urban system. To test whether riparian zones can act to maintain semi‐natural habitats within a city, we modelled the proportion of semi‐natural land cover within 250 m grid squares that do, and do not, contain a river. Results Species richness varied markedly in relation to distance from the urban core. Trends differed both between taxonomic groups and between rivers, reflecting the complex patterns of environmental variation associated with cities. This suggests that biodiversity surveys that focus on a single group or transect cannot reliably be used as surrogates even within the same city. Nonetheless, there were common environmental predictors of species richness. Plant, avian and butterfly richness all responded positively to Habitat Diversity and the latter two declined with increases in sealed surface. Main conclusions Multiple transects and taxonomic groups are required to describe species richness responses to urbanization as no single pattern is evident. Although riparian zones are an important component of the mosaic of urban habitats, we find that river corridors do not disproportionately support tree and Natural Surface Cover when compared to non‐riverine urban areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.