SUMMARYHuman embryonic kidney cells have been transformed by exposing cells to sheared fragments of adenovirus type 5 DNA. The transformed cells (designated 293 cells) exhibited many of the characteristics of transformation including the elaboration of a virus-specific tumour antigen. Analysis of the polypeptides synthesized in the 293 cells by labelling with 35S-methionine and SDS PAGE showed a variable pattern of synthesis, different in a number of respects from that seen in other human cells. On labelling the surface of cells by lactoperoxidase catalysed radio-iodination, the absence of a labelled polypeptide analogous to the 25o K (LETS) glycoprotein was noted. Hybridization of labelled cellular RNA with restriction fragments of adenovirus type 5 DNA indicated transcription of a portion of the adenovirus genome at the conventional left hand end.
Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids1. The abundant mtDNA-binding protein, transcription factor A mitochondrial (TFAM), regulates nucleoid architecture, abundance, and segregation2. Complete mtDNA depletion profoundly impairs oxidative phosphorylation (OXPHOS), triggering calcium-dependent stress signaling and adaptive metabolic responses3. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and aging, remain ill-defined4. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signaling to enhance the expression of a subset of interferon-stimulated genes (ISG). Mechanistically, we have found that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS and promotes STING-IRF3-dependent signaling to elevate ISG expression, potentiate type I interferon responses, and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which potentiates antiviral signaling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signaling, and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully license antiviral innate immunity.
Virus infection induces an antiviral response that is predominantly associated with the synthesis and secretion of soluble interferon. Here, we report that herpes simplex virus type 1 virions induce an interferonindependent antiviral state in human embryonic lung cells that prevents plaquing of a variety of viruses. Microarray analysis of 19,000 human expressed sequence tags revealed induction of a limited set of host genes, the majority of which are also induced by interferon. Genes implicated in controlling the intracellular spread of virus and eliminating virally infected cells were among those induced. Induction of the cellular response occurred in the absence of de novo cellular protein synthesis and required viral penetration. In addition, this response was only seen when viral gene expression was inhibited, suggesting that a newly synthesized viral protein(s) may function as an inhibitor of this response.
Treatment of human cells with Type 1 interferons restricts HIV replication. Here we report that the tripartite motif protein TRIM22 is a key mediator. We used transcriptional profiling to identify cellular genes that were induced by interferon treatment and identified TRIM22 as one of the most strongly up-regulated genes. We confirmed, as in previous studies, that TRIM22 over-expression inhibited HIV replication. To assess the role of TRIM22 expressed under natural inducing conditions, we compared the effects of interferon in cells depleted for TRIM22 using RNAi and found that HIV particle release was significantly increased in the knockdown, implying that TRIM22 acts as a natural antiviral effector. Further studies showed that TRIM22 inhibited budding of virus-like particles containing Gag only, indicating that Gag was the target of TRIM22. TRIM22 did not block the release of MLV or EIAV Gag particles. Inhibition was associated with diffuse cytoplasmic staining of HIV Gag rather than accumulation at the plasma membrane, suggesting TRIM22 disrupts proper trafficking. Mutational analyses of TRIM22 showed that the catalytic amino acids Cys15 and Cys18 of the RING domain are required for TRIM22 antiviral activity. These data disclose a pathway by which Type 1 interferons obstruct HIV replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.