Chronic kidney disease (CKD) is a prevalent condition in many countries, and it is estimated that over $1 trillion is spent globally on end-stage renal disease (ESRD) care. There is a clear clinical and economic rationale for designing timely and appropriate health system responses to limit progression from CKD to ESRD. This article reviews the gaps in our knowledge about which early CKD interventions are appropriate, the optimal time to intervene, and what model of care to adopt.
The available diagnostic tests exhibit key limitations. Clinical care may improve if early-stage (1–3) CKD with risk for progression towards ESRD is differentiated from early CKD that is unlikely to advance. It is possible that CKD should be re-conceptualized as a part of primary care. Additional research is needed to better understand the risk factors for CKD progression. Systems modelling can be used to evaluate the impact of different care models on CKD outcomes and costs. The US Indian Health Service experience has demonstrated that an integrated, system-wide approach, even in an underfunded system, can produce significant benefits.
The elastic precursor shock strengths of pentaerythritol tetranitrate explosive crystals were measured for [100], [101], [110], and [001] orientations using velocity interferometer system for any reflector instrumentation for samples 3–6 mm thick. Input shock strength was 1.14 GPa. Measured precursor amplitudes were 0.38, 0.58, 0.98, and 1.22 GPa, respectively, for the four orientations. Critical shear stress for the slip system with the maximum resolved shear stress for each shock orientation was computed. Details of the elastic and plastic wave profiles are discussed. Molecular mechanics modeling of the shear induced by the uniaxial strain of a plane shock wave in this molecular crystal was also performed using the amber code. This may be the first application of molecular mechanics computation to a shear problem. The modeling correctly predicts the dependence of the precursor amplitude on crystal orientation for the cases considered. The results confirm the importance of steric hindrance to shear in controlling the orientation-dependent strength in molecular crystals and sensitivity to shock initiation of detonation in molecular explosive crystals. Details of the molecular deformations and contributions to the energy barrier to inelastic shear for different orientations are given. The computational results also explain why the {110} 〈11̄1〉 slip system is observed in quasistatic deformation in spite of having the longest Burgers vector. The dynamics of sterically hindered, shock-induced shear is considered.
graphed along with other products with 30% ethyl acetate/hexane (MPLC). The methyl esters of the lactone acids were prepared by treatment with diazomethane after chromatography.
Joint models should be preferred for simultaneous analyses of repeated measurement and survival data, especially when the former is measured with error and the association between the underlying error-free measurement process and the hazard for survival is of scientific interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.