This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance.
Dielectric elastomers are of interest for actuator applications due to their large actuation strain, high bandwidth, high energy density, and their flexible nature. If future dielectric elastomers are to be used reliably in applications that include soft robotics, medical devices, artificial muscles and electronic skins, there is a need to design devices that are tolerant to electrical and mechanical damage. In this paper, we provide the first report of self-healing of both electrical breakdown and mechanical damage in dielectric actuators using a thermoplastic methyl thioglycolate modified styrene-butadiene-styrene (MGSBS) elastomer. The self-healing functions are examined from the material to device level by detailed examination of the healing process, and characterisation of electrical properties and actuator response before and after Complete Manuscript
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.