In this paper we provide an analytical description for the transverse dynamics of relativistic, space-chargedominated beams undergoing strong acceleration, such as those typically produced by rf photoinjectors. These beams are chiefly characterized by a fast transition, due to strong acceleration, from the nonrelativistic to the relativistic regime in which the initially strong collective plasma effects are greatly diminished. However, plasma oscillations in the transverse plane are still effective in significantly perturbing the evolution of the transverse phase space distribution, introducing distortions and longitudinal-transverse correlations that cause an increase in the rms transverse emittance of the beam as a whole. The beam envelope evolution is dominated by such effects and not by the thermal emittance, and so the beam flow can be considered quasilaminar. The model adopted is based on the rms envelope equation, for which we find an exact particular analytical solution taking into account the effects of linear space-charge forces, external focusing due to applied as well as ponderomotive RF forces, acceleration, and adiabatic damping, in the limit that the weak nonlaminarity due to the thermal emittance may be neglected. This solution represents a special mode for beam propagation that assures a secularly diminishing normalized rms emittance and it represents the fundamental operating condition of a space-charge-compensated RF photoinjector. The conditions for obtaining emittance compensation in a long, integrated photoinjector, in which the gun and linac sections are joined, as well as in the case of a short gun followed by a drift and a booster linac, are examined. ͓S1063-651X͑97͒10706-1͔
Beam-driven plasma wakefield acceleration using low-ionization-threshold gas such as Li is combined with laser-controlled electron injection via ionization of high-ionization-threshold gas such as He. The He electrons are released with low transverse momentum in the focus of the copropagating, nonrelativistic-intensity laser pulse directly inside the accelerating or focusing phase of the Li blowout. This concept paves the way for the generation of sub-μm-size, ultralow-emittance, highly tunable electron bunches, thus enabling a flexible new class of an advanced free electron laser capable high-field accelerator.
A new scheme for plasma electron injection into an acceleration phase of a plasma wake field is presented. In this scheme, a single, short electron pulse travels through an underdense plasma with a sharp, localized, downward density transition. Near this transition, a number of background plasma electrons are trapped in the plasma wake field, due to the rapid wavelength increase of the induced wake wave in this region. The viability of this scheme is verified using two-dimensional particle-in-cell simulations. To investigate the trapping and acceleration mechanisms further, a 1D Hamiltonian analysis, as well as 1D simulations, has been performed, with the results presented and compared.
The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. We review the physics and technology of this approach, which we refer to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV/m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Due to the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.