Previous studies revealed that within a family of ligands the more lipophilic chelators have better iron-clearing efficiency. The larger the log P(app) value of the compound, the better the iron-clearing efficiency. What is also clear from the data is that although the relative effects of log P(app) changes are essentially the same through different families, there are differences in absolute value between families. However, there also exists a second, albeit somewhat more disturbing, relationship. In all sets of ligands, the most lipophilic chelator is always the most toxic. The current study focuses on designing ligands that balance the lipophilicity/toxicity problem while iron-clearing efficiency is maintained. Earlier studies with (S)-4,5-dihydro-2-(2-hydroxy-4-methoxyphenyl)-4-methyl-4-thiazolecarboxylic acid [(S)-4'-(CH(3)O)-DADFT, 6] indicated that this methyl ether was a ligand with excellent iron-clearing efficiency in both rodents and primates; however, it was too toxic. On the basis of this finding, a less lipophilic, more water-soluble ligand than 6 was assembled, (S)-4,5-dihydro-2-[2-hydroxy-4-(3,6,9-trioxadecyloxy)phenyl]-4-methyl-4-thiazolecarboxylic acid [(S)-4'-(HO)-DADFT-PE, 11], a polyether analogue, along with its ethyl and isopropyl esters. The parent polyether and its isopropyl and ethyl esters were all shown to be highly efficient iron chelators in both rodents and primates. A comparison of 11 in rodents with the desferrithiocin analogue (S)-4,5-dihydro-2-(2,4-dihydroxyphenyl)-4-methyl-4-thiazolecarboxylic acid [(S)-4'-(HO)-DADFT, 1] revealed the polyether to be more tolerable, achieving higher concentrations in the liver and significantly lower concentrations in the kidney. The lower renal drug levels are in keeping with the profound difference in the architectural changes seen in the kidney of rodents given 1 versus those treated with 11.
A basis set of polyamine analogues was designed and synthesized. These compounds were used to initiate a systematic investigation of the role of chain length, terminal nitrogen alkyl group size, and symmetry of the methylene backbone in the antineoplastic properties of polyamine analogues. New synthetic methods predicated on our earlier polyamine fragment synthesis are described for accessing the tetraamines of interest. An unsymmetrically substituted diamine reagent, N-(tert-butoxycarbonyl)-N,N'-bis(mesitylenesulfonyl)-1,4-diaminobu tane, was developed for entry into unsymmetrical tetraamines. All of the tetraamines synthesized were first evaluated in a murine leukemia L1210 cell IC50 assay at 48 and 96 h. In an attempt to correlate this behavior with some aspect of polyamine metabolism, each compound was tested for its ability to compete with spermidine for the polyamine uptake apparatus, its impact on the polyamine biosynthetic enzymes ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC), and its effect on the polyamine-catabolizing enzyme spermidine/spermine N1-acetyltransferase (SSAT) and on polyamine pools. While there was no obvious correlation between the 48 and 96 h IC50's and the impact of the analogues on polyamine metabolism, there were other structure-activity relationships. Correlations were observed to exist between chain length and IC50's and between terminal alkyl substituents and impact on Ki, ODC, and AdoMetDC. Also, preliminary studies suggest a relationship may exist between the 48 and 96 h IC50 activities and the analogue's chronic toxicity in vivo. Finally, when the overall length of the polyamine backbone was held constant, the symmetry of the methylene chains of the polyamine fragments was shown to be unimportant to the compound's activity.
In this paper, we report on the synthesis and biological activity of a number of N-alkylated spermine compounds. The dialkylspermines N1,N12-dimethylspermine (DMSPM-2), N1,N12-diethylspermine (DESPM-3), and N1,N12-dipropylspermine (DPSPM-4) are all shown to inhibit the growth of L1210 cells in culture with IC50 values of less than 1 microM at 96 h. Furthermore, DESPM-3 is shown to be similarly active against Daudi and HL-60 cells in culture. A structure-activity relationship is shown to exist between the position at which spermine is alkylated and its antiproliferative properties. The activity of 10 microM DESPM-3 against L1210 cells was shown to be cytostatic, with greater than 90% cell viability by trypan blue exclusion, even after a 144-h exposure. When L1210 cells were treated with 10 microM DESPM-3 over a 144-h period, their size and mitochondrial DNA content were gradually but substantially diminished. However, flow cytometric measurements of the nuclear DNA content of these treated cells at 96 h indicated only slightly reduced S and G2 populations and significant changes only after 144 h. A cloning assay performed on the cells after 96 h of exposure to this drug (10 microM) indicated that the cells were not growing. Finally, when male DBA/2 mice, inoculated with L1210 leukemia cells, were treated with DESPM-3, their life span was increased in excess of 200% relative to untreated controls. Moreover, many long-term survivors were apparently tumor free at the end of the experiment (60 days).
Additional structure-activity studies of desferrithiocin analogues are carried out. The effects of stereochemistry at C-4 on the ligands' iron clearing efficiency are reviewed and assessed using the enantiomers 4,5-dihydro-2-(2, 4-dihydroxyphenyl)thiazole-4(R)-carboxylic acid and 4,5-dihydro-2-(2, 4-dihydroxyphenyl)thiazole-4(S)-carboxylic acid. The utility of 4'-hydroxylation as a method of reducing the toxicity of desazadesferrithiocin analogues is also examined further with the synthesis and in vivo comparison of 4, 5-dihydro-2-(2-hydroxyphenyl)-4-methylthiazole-4(S)-carboxylic acid, which is the natural product 4-methylaeruginoic acid, and 4, 5-dihydro-2-(2,4-dihydroxyphenyl)-4-methylthiazole-4(S)-carboxylic acid. The stereochemistry at C-4 is shown to have a substantial effect on the iron clearing efficiency of desferrithiocin analogues, as does C-4'-hydroxylation on the toxicity profile. All of the compounds are evaluated in a bile-duct-cannulated rodent model to determine iron clearance efficiency and are carried forward to the iron-overloaded primate for iron clearing measurements. On the basis of the results of the present work, although 4,5-dihydro-2-(2, 4-dihydroxyphenyl)thiazole-4(S)-carboxylic acid is still the most promising candidate for clinical evaluation, 4,5-dihydro-2-(2, 4-dihydroxyphenyl)-4-methylthiazole-4(S)-carboxylic acid (4'-hydroxydesazadesferrithiocin) also merits further preclinical assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.