A significant fraction of global electricity demand is for lighting. Enabled by the realization and development of efficient GaN blue light-emitting diodes (LEDs), phosphor-based solid-state white LEDs provide a much higher efficiency alternative to incandescent and fluorescent lighting, which are being broadly implemented. However, a key challenge for this industry is to achieve the right photometric ranges and application-specific emission spectra via cost-effective means. Here, we synthesize organic–inorganic lead halide-based perovskite crystals with broad spectral tuneability. By tailoring the composition of methyl and octlyammonium cations in the colloidal synthesis, meso- to nanoscale 3D crystals (5–50 nm) can be formed with enhanced photoluminescence efficiency. By increasing the octlyammonium cations content, we observe platelet formation of 2D layered perovskite sheets; however, these platelets appear to be less emissive than the 3D crystals. We further manipulate the halide composition of the perovskite crystals to achieve emission covering the entire visible spectrum. By blending perovskite crystals with different emission wavelengths in a polymer host, we demonstrate the potential to replace conventional phosphors and provide the means to replicate natural white light when excited by a blue GaN LED.
Geometric or electronic confinement of guests inside nanoporous hosts promises to deliver unusual catalytic or opto-electronic functionality from existing materials but is challenging to obtain particularly using metastable hosts, such as metal–organic frameworks (MOFs). Reagents (e.g. precursor) may be too large for impregnation and synthesis conditions may also destroy the hosts. Here we use thermodynamic Pourbaix diagrams (favorable redox and pH conditions) to describe a general method for metal-compound guest synthesis by rationally selecting reaction agents and conditions. Specifically we demonstrate a MOF-confined RuO2 catalyst (RuO2@MOF-808-P) with exceptionally high catalytic CO oxidation below 150 °C as compared to the conventionally made SiO2-supported RuO2 (RuO2/SiO2). This can be caused by weaker interactions between CO/O and the MOF-encapsulated RuO2 surface thus avoiding adsorption-induced catalytic surface passivation. We further describe applications of the Pourbaix-enabled guest synthesis (PEGS) strategy with tutorial examples for the general synthesis of arbitrary guests (e.g. metals, oxides, hydroxides, sulfides).
Cesium lead halide nanocrystals, CsPbX3 (X = Cl, Br, I), exhibit photoluminescence quantum efficiencies approaching 100% without the core–shell structures usually used in conventional semiconductor nanocrystals. These high photoluminescence efficiencies make these crystals ideal candidates for light-emitting diodes (LEDs). However, because of the large surface area to volume ratio, halogen exchange between perovskite nanocrystals of different compositions occurs rapidly, which is one of the limiting factors for white-light applications requiring a mixture of different crystal compositions to achieve a broad emission spectrum. Here, we use mixtures of chloride and iodide CsPbX3 (X = Cl, I) perovskite nanocrystals where anion exchange is significantly reduced. We investigate samples containing mixtures of perovskite nanocrystals with different compositions and study the resulting optical and electrical interactions. We report excitation transfer from CsPbCl3 to CsPbI3 in solution and within a poly(methyl methacrylate) matrix via photon reabsorption, which also occurs in electrically excited crystals in bulk heterojunction LEDs.
Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the cplane QWs. This work not only provides insights into the structure of non-polar a-plane QWs, but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering.
Three-dimensional carbon-based structures have proven useful for tailoring material properties in structural mechanical and energy storage applications. One approach to obtain them has been by carbonization of selected metal–organic frameworks (MOFs) with catalytic metals, but this is not applicable to most common MOF structures. Here, we present a strategy to transform common MOFs, by guest inclusions and high-temperature MOF–guest interactions, into complex carbon-based, diatom-like, hierarchical structures (named for the morphological similarities with the naturally existing diatomaceous species). As an example, we introduce metal salt guests into HKUST-1-type MOFs to generate a family of carbon-based nano-diatoms with two to four levels of structural hierarchy. We report control of the morphology by simple changes in the chemistry of the MOF and guest, with implications for the formation mechanisms. We demonstrate that one of these structures has unique advantages as a fast-charging lithium-ion battery anode. The tunability of composition should enable further studies of reaction mechanisms and result in the growth of a myriad of unprecedented carbon-based structures from the enormous variety of currently available MOF–guest candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.