The enzyme uracil DNA glycosylase (UNG) excises unwanted uracil bases in the genome using an extrahelical base recognition mechanism. Efficient removal of uracil is essential for prevention of C-to-T transition mutations arising from cytosine deamination, cytotoxic U*A pairs arising from incorporation of dUTP in DNA, and for increasing immunoglobulin gene diversity during the acquired immune response. A central event in all of these UNG-mediated processes is the singling out of rare U*A or U*G base pairs in a background of approximately 10(9) T*A or C*G base pairs in the human genome. Here we establish for the human and Escherichia coli enzymes that discrimination of thymine and uracil is initiated by thermally induced opening of T*A and U*A base pairs and not by active participation of the enzyme. Thus, base-pair dynamics has a critical role in the genome-wide search for uracil, and may be involved in initial damage recognition by other DNA repair glycosylases.
The DNA repair enzyme uracil DNA glycosylase (UDG) catalyzes hydrolytic cleavage of the N-glycosidic bond of premutagenic uracil residues in DNA by flipping the uracil base from the DNA helix. The mechanism of base flipping and the role this step plays in site-specific DNA binding and catalysis by enzymes are largely unknown. The thermodynamics and kinetics of DNA binding and uracil flipping by UDG have been studied in the absence of glycosidic bond cleavage using substrate analogues containing the 2'-alpha and 2'-beta fluorine isomers of 2'-fluoro-2'-deoxyuridine (Ubeta, Ualpha) positioned adjacent to a fluorescent nucleotide reporter group 2-aminopurine (2-AP). Activity measurements show that DNA containing a Ubeta or Ualpha nucleotide is a 10(7)-fold slower substrate for UDG (t1/2 approximately 20 h), which allows measurements of DNA binding and base flipping in the absence of glycosidic bond cleavage. When UDG binds these analogues, but not other DNA molecules, a 4-8-fold 2-AP fluorescence enhancement is observed, as expected for a decrease in 2-AP base stacking resulting from enzymatic flipping of the adjacent uracil. Thermodynamic measurements show that UDG forms weak nonspecific complexes with dsDNA (KDns = 1.5 microM) and binds approximately 25-fold more tightly to Ubeta containing dsDNA (KDapp approximately 50 nM). Thus, base flipping contributes less than approximately 2 kcal/mol to the free energy of binding and is not a major component of the >10(6)-fold catalytic specificity of UDG. Kinetic studies at 25 degrees C show that site-specific binding occurs by a two-step mechanism. The first step (E + S left and right arrow ES) involves the diffusion-controlled binding of UDG to form a weak nonspecific complex with the DNA (KD approximately 1.5-3 microM). The second step (ES left and right arrow E'F) involves a rapid step leading to reversible uracil flipping (kmax approximately 1200 s-1). This step is followed closely by a conformational change in UDG that was monitored by the quenching of tryptophan fluorescence. The results provide evidence for an enzyme-assisted mechanism for uracil flipping and exclude a passive mechanism in which the enzyme traps a transient extrahelical base in the free substrate. The data suggest that the duplex structure of the DNA is locally destabilized before the base-flipping step, thereby facilitating extrusion of the uracil. Thus, base flipping contributes little to the free energy of DNA binding but contributes greatly to specificity through an induced-fit mechanism.
AID/APOBEC family cytosine deaminases, known to function in diverse cellular processes from antibody diversification to mRNA editing, have also been implicated in DNA demethylation, an important process for transcriptional activation. While oxidation-dependent pathways for demethylation have been described, pathways involving deamination of either 5-methylcytosine (mC) or 5-hydroxymethylcytosine (hmC) have emerged as alternatives. Here, we have addressed the biochemical plausibility of deamination-coupled demethylation. We found that purified AID/APOBECs have substantially reduced activity on mC relative to cytosine, their canonical substrate, and no detectable deamination of hmC. This finding was explained by the reactivity of a series of modified substrates, where steric bulk was increasingly detrimental to deamination. Further, upon AID/APOBEC overexpression, the deamination product of hmC was undetectable in genomic DNA, while oxidation intermediates remained detectable. Our results indicate that the steric requirements for cytosine deamination are one intrinsic barrier to the proposed function of deaminases in DNA demethylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.