Tagging of ventricular structures in experimental animals by sonomicrometry array localization images is highly reproducible and suitable for serial observations. In sheep the method provides unique, quantitative information regarding the interrelationship of mitral valvular and left ventricular structures throughout the cardiac cycle.
Changes in the geometric and intravalvular relationships between subunits of the ovine mitral valve were measured before and after acute posterior wall myocardial infarction in three dimensions by means of sonomicrometry array localization. In 13 sheep, nine sonomicrometer transducers were attached around the mitral anulus and to the tip and base of each papillary muscle. Five additional transducers were placed on the epicardium. Snares were placed around three branches of the circumflex coronary artery. One to 2 weeks later, echocardiograms, dimension measurements, and left ventricular pressures were obtained before and after the coronary arteries were occluded. Data were obtained from seven sheep. Coronary occlusion infarcted 32% of the posterior left ventricle and produced 2 to 3+ mitral regurgitation by Doppler color flow mapping. Multidimensional scaling of dimension measurements obtained from sonomicrometry transducers produced three-dimensional spatial coordinates of each transducer location throughout the cardiac cycle before and after infarction and onset of mitral regurgitation. After posterior infarction, the mitral anulus enlarges asymmetrically along the posterior anulus, and the tip of the posterior papillary muscle moves 1.5 +/- 0.3 mm closer to the posterior commissure at end-systole. The posterior papillary muscle also elongates 1.9 +/- 0.3 mm at end-systole. The left ventricle enlarges asymmetrically and ventricular torsion along the long axis changes. The development of postinfarction mitral regurgitation appears to be the consequence of multiple small changes in ventricular shape and contractile deformation and in the spatial relationship of mitral valvular subunits.
We describe a new method which uses sonomicrometry and the statistical technique of multidimensional scaling (MDS) to measure the three-dimensional (3-D) coordinates of multiple cardiac locations. We refer to this new method as sonomicrometry array localization (SAL). The new method differs from standard sonomicrometry in that each piezoelectric transducer element is used as both transmitter and receiver and the set of intertransducer element distances is measured. MDS calculates the 3-D coordinates of each sonomicrometry transducer element from the set of intertransducer element distances. The feasibility of this new method was tested with mathematical simulations which demonstrated the ability of MDS to compensate for signal error and missing intertransducer element distances. We describe the design elements of a modified digitally controlled sonomicrometer in which a single transducer element can sequentially broadcast to as many as eight receiver elements. That design is used to validate SAL in a water bath and in ex vivo and living hearts. Correlation with caliper measurement in the water bath (y int. = 3.91 +/- 3.36 mm, slope = 1.04 +/- 0.05, r2 = 0.969 +/- 0.027) and with radiography in ex vivo (y int. = -0.87 +/- 0.92 mm, slope = 0.97 +/- 0.02, r2 = 0.960 +/- 0.023) and in vivo hearts (y int. = 2.98 +/- 2.59 mm, slope = 1.01 +/- 0.06, r2 = 0.953 +/- 0.031) was excellent. Sonomicrometry array localization is able to accurately measure the 3-D coordinates of multiple cardiac locations. It can potentially measure myocardial deformation and remodeling after ischemic or valvular injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.