This paper reports on the use of scanning ion conductance microscopy (SICM) to locally map the ionic properties and charge environment of two live bacterial strains: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. SICM results find heterogeneities across the bacterial surface and significant differences among the Gram-positive and Gram-negative bacteria. The bioelectrical environment of the B. subtilis was found to be considerably more negatively charged compared to E. coli. SICM measurements, fitted to a simplified finite element method (FEM) model, revealed surface charge values of −80 to −140 mC m −2 for the Gram-negative E. coli. The Gram-positive B. subtilis show a much higher conductivity around the cell wall, and surface charge values between −350 and −450 mC m −2 were found using the same simplified model. SICM was also able to detect regions of high negative charge near B. subtilis, not detected in the topographical SICM response and attributed to the extracellular polymeric substance. To further explore how the B. subtilis cell wall structure can influence the SICM current response, a more comprehensive FEM model, accounting for the physical properties of the Gram-positive cell wall, was developed. The new model provides a more realistic description of the cell wall and allows investigation of the relation between its key properties and SICM currents, building foundations to further investigate and improve understanding of the Gram-positive cellular microenvironment.
Background Transcription in mammalian cells is a complex stochastic process involving shuttling of polymerase between genes and phase-separated liquid condensates. It occurs in bursts, which results in vastly different numbers of an mRNA species in isogenic cell populations. Several factors contributing to transcriptional bursting have been identified, usually classified as intrinsic, in other words local to single genes, or extrinsic, relating to the macroscopic state of the cell. However, some possible contributors have not been explored yet. Here, we focus on processes at the 3 ′ and 5 ′ ends of a gene that enable reinitiation of transcription upon termination. Results Using Bayesian methodology, we measure the transcriptional bursting in inducible transgenes, showing that perturbation of polymerase shuttling typically reduces burst size, increases burst frequency, and thus limits transcriptional noise. Analysis based on paired-end tag sequencing (PolII ChIA-PET) suggests that this effect is genome wide. The observed noise patterns are also reproduced by a generative model that captures major characteristics of the polymerase flux between the ends of a gene and a phase-separated compartment. Conclusions Interactions between the 3 ′ and 5 ′ ends of a gene, which facilitate polymerase recycling, are major contributors to transcriptional noise.
Scanning ion conductance microscopy (SICM) is a powerful and versatile technique that allows an increasingly wide range of interfacial properties and processes to be studied. SICM employs a nanopipette tip that contains electrolyte solution and a quasi-reference counter electrode (QRCE), to which a potential is applied with respect to a QRCE in a bathing solution, in which the tip is placed. The work herein considers the potential-controlled delivery of uncharged electroactive molecules (solute) from an SICM tip to a working electrode substrate to determine the effect of the substrate on electroosmotic flow (EOF). Specifically, the local delivery of hydroquinone from the tip to a carbon fiber ultramicroelectrode (CF UME) provides a means of quantifying the rate of mass transport from the nanopipette and mapping electroactivity via the CF UME current response for hydroquinone oxidation to benzoquinone. EOF, and therefore species delivery, has a particularly strong dependence on the charge of the substrate surface at close nanopipette−substrate surface separations, with implications for retaining neutral solute within the tip predelivery and for the delivery process itself, both controlled via the applied tip potential. Finite element method (FEM) simulations of mass transport and reactivity are used to explain the experimental observations and identify the nature of EOF, including unusual flow patterns under certain conditions. The combination of experimental results with FEM simulations provides new insights on mass transport in SICM that will enhance quantitative applications and enable new possibilities for the use of nanopipettes for local delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.