Nanorods of PCN-222, a large-pore, zirconiumbased porphyrinic metal−organic framework (MOF), have been prepared through coordination modulationcontrolled crystal growth through competing monodentate ligands known as modulatorsfor incorporation into reverse osmosis thin-film nanocomposite (TFN) membranes. Postsynthetic modification of the MOF node through binding of myristic acid (MA) altered channel dimensions and pore size distribution. The extent of MOF modification was characterized through Brunauer−Emmett−Teller gas sorption and 1 H NMR following digestion of the particles. TFN membranes containing PCN-222 nanoparticles modified with varying levels of MA were fabricated via dispersion in the aqueous phase during interfacial polymerization, and the resulting flux and rejection performance of each membrane were evaluated. Increased water flux was observed with increasing MA content in the PCN-222 nanorods. Up to 95% increase in water flux was observed for a TFN containing 0.01 wt % loading of PCN-222 nanorods with a 10:1 MA to linker ratio, while maintaining high salt rejection. The flux change was attributed to tunable water transport through the nanorod pore structure and also through rapid water transport pathways at the nanorod−polymer interface.
This manuscript describes the structure–property–morphology relationships of doubly charged 1,4-diazabicyclo[2.2.2]octane (DABCO) salt-containing ABA triblock ionomers. The triblock copolymers consist a soft poly(n-butyl acrylate) (PnBA) central block and two external styrenic hard blocks bearing amphiphilic pendant C18-alkyl groups and doubly charged salt units. Surprisingly, the DABCO salt-containing ABA block copolymers preserved the thermomechanical integrity until degradation, which indicated the formation of a reinforcing physical network compared to the corresponding doubly charged random copolymers and singly charged block copolymer analogs. Small-angle X-ray scattering data revealed that the DABCO-based ABA block copolymers self-assembled into highly ordered hierarchical microstructures, in which the soft and hard domain of the block copolymers phase-separated into highly ordered lamellar morphologies. Moreover, a secondary structure that originated from the ordering of the amphiphilic pendant groups formed within the lamellar hard domain. The interesting thermal, thermomechanical, and morphological properties of doubly charged ionic block copolymers open promising avenues for the synthesis of novel thermoplastic elastomers.
Thin-film nanocomposite membranes (TFNs) are a recent class of materials that use nanoparticles to provide improvements over traditional thin-film composite (TFC) reverse osmosis membranes by addressing various design challenges, e.g., low flux for brackish water sources, biofouling, etc. In this study, TFNs were produced using as-received cellulose nanocrystals (CNCs) and 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanocrystals (TOCNs) as nanoparticle additives. Cellulose nanocrystals are broadly interesting due to their high aspect ratios, low cost, sustainability, and potential for surface modification. Two methods of membrane fabrication were used in order to study the effects of nanoparticle dispersion on membrane flux and salt rejection: a vacuum filtration method and a monomer dispersion method. In both cases, various quantities of CNCs and TOCNs were incorporated into a polyamide TFC membrane via in-situ interfacial polymerization. The flux and rejection performance of the resulting membranes was evaluated, and the membranes were characterized via attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The vacuum filtration method resulted in inconsistent TFN formation with poor nanocrystal dispersion in the polymer. In contrast, the dispersion method resulted in more consistent TFN formation with improvements in both water flux and salt rejection observed. The best improvement was obtained via the monomer dispersion method at 0.5 wt% TOCN loading resulting in a 260% increase in water flux and an increase in salt rejection to 98.98 ± 0.41% compared to 97.53 ± 0.31% for the plain polyamide membrane. The increased flux is attributed to the formation of nanochannels at the interface between the high aspect ratio nanocrystals and the polyamide matrix. These nanochannels serve as rapid transport pathways through the membrane, and can be used to tune selectivity via control of particle/polymer interactions.
We report the synthesis of an ABA triblock copolymer of the structure CTA-b-PB-b-CTA (CTA = cellulose triacetate and PB = polybutadiene) and its ability to compatibilize immiscible CTA/PB polymer blends. CTA-b-PB-b-CTA was synthesized via ring-opening metathesis polymerization of cyclooctadiene (COD) in the presence of CTA containing a single olefin on the reducing end. The ABA triblock copolymer was incorporated into CTA/PB blends, resulting in films that were clear, tough, and creaseable, and increases in modulus, elongation at break, and toughness were observed with addition of as little as 1 wt % compatibilizer. Scanning electron microscopy revealed well-defined PB phases in the CTA matrix that decreased in domain size as more compatibilizer was added. This work may enhance the application scope of CTA and other cellulose-derived renewable polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.