Protein exposed to glucose is cleaved, undergoes conformational change and develops fluorescent adducts ('glycofluorophores'). These changes are presumed to result from the covalent attachment of glucose to amino groups. We have demonstrated, however, that the fragmentation and conformational changes observed are dependent upon hydroxyl radicals produced by glucose autoxidation, or some closely related process, and that antioxidants dissociate structural damage caused by the exposure of glucose to protein from the incorporation of monosaccharide into protein. We have also provided further evidence that glycofluorophore formation is dependent upon metal-catalysed oxidative processes associated with ketoaldehyde formation. If experimental glycation is an adequate model of tissue damage occurring in diabetes mellitus, then these studies indicate a therapeutic role for antioxidants.
It has been postulated that the etiology of the complications of diabetes involves oxidative stress, perhaps as a result of hyperglycemia. Consistent with this hypothesis, it has been shown that glucose, under physiological conditions, produces oxidants that possess reactivity similar to the hydroxyl free radical. These oxidants hydroxylate benzoic acid, fragment protein, and induce peroxidation in phosphatidylcholine liposomes and low-density lipoprotein (LDL) when LDL is incubated with hyperglycemic levels of glucose in vitro. These reactions are accelerated by transition metals and inhibited by a metal-chelating agent. The atherosclerotic potential of LDL in diabetes mellitus is often discussed in terms of protein glycosylation, which may affect cellular interactions. Our studies demonstrate, however, that peroxidative reactions also accompany LDL glycosylation in vitro. Peroxidative modification of LDL has also been implicated in LDL atherogenicity. Our studies indicate that glycosylation and peroxidation occur concomitantly in LDL modified by glucose in vitro and may both contribute to the behavioral changes of this lipoprotein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.