BackgoundOlfactory cues directly link the environment to gene expression. Two types of olfactory cues, food odors and social odors, alter genetically predisposed hormone-mediated activity in the mammalian brain.MethodsThe honeybee is a model organism for understanding the epigenetic link from food odors and social odors to neural networks of the mammalian brain, which ultimately determine human behavior.ResultsPertinent aspects that extend the honeybee model to human behavior include bottom-up followed by top-down gene, cell, tissue, organ, organ-system, and organism reciprocity; neurophysiological effects of food odors and of sexually dimorphic, species-specific social odors; a model of motor function required for social selection that precedes sexual selection; and hormonal effects that link current neuroscience to social science affects on the development of animal behavior.ConclusionAs the psychological influence of food odors and social orders is examined in detail, the socioaffective nature of olfactory cues on the biologically based development of sexual preferences across all species that sexually reproduce becomes clearer.
BackgroundThe prenatal migration of gonadotropin-releasing hormone (GnRH) neurosecretory neurons allows nutrients and human pheromones to alter GnRH pulsatility, which modulates the concurrent maturation of the neuroendocrine, reproductive, and central nervous systems, thus influencing the development of ingestive behavior, reproductive sexual behavior, and other behaviors.MethodsThis model details how chemical ecology drives adaptive evolution via: (1) ecological niche construction, (2) social niche construction, (3) neurogenic niche construction, and (4) socio-cognitive niche construction. This model exemplifies the epigenetic effects of olfactory/pheromonal conditioning, which alters genetically predisposed, nutrient-dependent, hormone-driven mammalian behavior and choices for pheromones that control reproduction via their effects on luteinizing hormone (LH) and systems biology.ResultsNutrients are metabolized to pheromones that condition behavior in the same way that food odors condition behavior associated with food preferences. The epigenetic effects of olfactory/pheromonal input calibrate and standardize molecular mechanisms for genetically predisposed receptor-mediated changes in intracellular signaling and stochastic gene expression in GnRH neurosecretory neurons of brain tissue. For example, glucose and pheromones alter the hypothalamic secretion of GnRH and LH. A form of GnRH associated with sexual orientation in yeasts links control of the feedback loops and developmental processes required for nutrient acquisition, movement, reproduction, and the diversification of species from microbes to man.ConclusionAn environmental drive evolved from that of nutrient ingestion in unicellular organisms to that of pheromone-controlled socialization in insects. In mammals, food odors and pheromones cause changes in hormones such as LH, which has developmental affects on pheromone-controlled sexual behavior in nutrient-dependent reproductively fit individuals across species of vertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.