Curacin A (1) is a potent cancer cell toxin obtained from strains of the tropical marine cyanobacterium Lyngbya majuscula found in Curaçao. Its structure is unique in that it contains the sequential positioning of a thiazoline and cyclopropyl ring, and it exerts its potent cell toxicity through interaction with the colchicine drug binding site on microtubules. A series of stable isotope-labeled precursors were fed to cultures of curacin A-producing strains and, following NMR analysis, allowed determination of the metabolic origin of all atoms in the natural product (one cysteine, 10 acetate units, two S-adenosyl methionine-derived methyl groups) as well as several unique mechanistic insights. Moreover, these incorporation experiments facilitated an effective gene cloning strategy that allowed identification and sequencing of the approximately 64 kb putative curacin A gene cluster. The metabolic system is comprised of a nonribosomal peptide synthetase (NRPS) and multiple polyketide synthases (PKSs) and shows a very high level of collinearity between genes in the cluster and the predicted biochemical steps required for curacin biosynthesis. Unique features of the cluster include (1) all but one of the PKSs are monomodular multifunctional proteins, (2) a unique gene cassette that contains an HMG-CoA synthase likely responsible for formation of the cyclopropyl ring, and (3) a terminating motif that is predicted to function in both product release and terminal dehydrative decarboxylation.
Phytochemical analysis of an extract from the brown alga Laminaria sinclairii led to the isolation of neohalicholactone, a cyclopropyl-containing oxylipin previously isolated from a marine sponge, Halichondria okadai. Unequivocal stereochemical analysis of the C-15 hydroxyl group showed this isolate to be of opposite overall absolute stereochemistry compared to that proposed for halicholactone, a related compound from the sponge, and by our inference, sponge-derived neohalicholactone. Comparison of chiroptical data for all three compounds indicates the absolute stereochemistry of the sponge compounds is most probably opposite to that previously proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.