Oceanic central gyres cover large areas of the earth and contribute significantly to global productivity. Oceanic phytoplankton production is believed to be Limited by nitrogen (N) in central gyres and iron (Fe) in high-nutrient low-chlorophyll regions. Bacterioplankton have been less studied but are believed to be limited by organic carbon. We report here that bacterioplankton in the Sargasso Sea were phosphorus (P) limited on cruises in 1992 and 1993. This assertion is supported by measurements of high dissolved and particulate N:P and C:P ratios, high alkaline phosphatase activity and phosphate uptake rates, and bacterioplankton growth rate responses In bioassays where inorganic P was added. Particulate C:P ratios were always higher than the Redfield ratio (106:l) and occasionally greater than 400:l. N:P ratios were 75:l and 46:l on 2 cruises and tlme-series data indicated that ratios were always greater than 24:l over nearly a 2 yr span. Phosphate concentrations were extremely low in the euphotic zone (< 10 nM) and biomass-normalized alkaline phosphatase activities indicated moderate to severe P limitation, with most severe lunitation occurring in the spring. Bioassays indicated that heterotrophic bacteria may be P limited in the northwestern Sargasso Sea, especially in the spring. Limitation by P and not dissolved organic carbon may explain why dissolved organic carbon accumulates in the water column at that time.
Phosphorus (P) is a vital nutrient for all living organisms and may control the growth of bacteria in the ocean. Bacteria induce alkaline phosphatases when inorganic phosphate (Pi) is insufficient to meet their P-requirements, and therefore bulk alkaline phosphatase activity measurements have been used to assess the P-status of microbial assemblages. In this study, the molecular basis of marine bacterial phosphatases and their potential role in the environment were investigated. We found that only a limited number of homologs to the classical Escherichia coli alkaline phosphatase (PhoA) were present in marine isolates in the Bacteroidetes and γ-proteobacteria lineages. In contrast, PhoX, a recently described phosphatase, was widely distributed among diverse bacterial taxa, including Cyanobacteria, and frequently found in the marine metagenomic Global Ocean Survey database. These taxa included ecologically important groups such as Roseobacter and Trichodesmium. PhoX was induced solely upon P-starvation and accounted for approximately 90% of the phosphatase activity in the model marine bacterium Silicibacter pomeroyi. Analysis of the available transcriptomic datasets and their corresponding metagenomes indicated that PhoX is more abundant than PhoA in oligotrophic marine environments such as the North Pacific Subtropical Gyre. Those analyses also revealed that PhoA may be important when Bacteroidetes are abundant, such as in algal bloom episodes. However, PhoX appears to be much more widespread. Its identification as a gene that mediates organic P acquisition in ecologically important groups, and as a marker of Pi-stress, constitutes an important step toward a better understanding of the marine P cycle.
Abstract. Inorganic phosphorus (SRP) concentrations in the subtropical North Atlantic are some of the lowest in the global ocean and have been hypothesized to constrain primary production. Based upon data from several transect cruises in this region, it has been hypothesized that dissolved organic phosphorus (DOP) supports a significant fraction of primary production in the subtropical North Atlantic. In this study, a time-series of phosphorus biogeochemistry is presented for the Bermuda Atlantic Time-series Study site, including rates of phosphorus export. Most parameters have a seasonal pattern, although year-over-year variability in the seasonal pattern is substantial, likely due to differences in external forcing. Suspended particulate phosphorus exhibits a seasonal maximum during the spring bloom, despite the absence of a seasonal peak in SRP. However, DOP concentrations are at an annual maximum prior to the winter/spring bloom and decline over the course of the spring bloom while whole community alkaline phosphatase activities are highest. As a result of DOP bioavailability, the growth of particles during the spring bloom occurs in Redfield proportions, though particles exported from the euphotic zone show rapid and significant remineralization of phosphorus within the first 50 m below the euphotic zone. Based upon DOP data from transect cruises in this region, the southward cross gyral flux of DOP is estimated to support ∼25% of annual primary production and ∼100% of phosphorus export. These estimates are consistent with other research in the subtropical North Atlantic and reinforce the hypothesis that while Correspondence to: M. W. Lomas (michael.lomas@bios.edu) the subtropics may be phosphorus stressed (a physiological response to low inorganic phosphorus), utilization of the DOP pool allows production and accumulation of microbial biomass at Redfield proportions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.