We report that tumor cells without mitochondrial DNA (mtDNA) show delayed tumor growth, and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory (super)complexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest pathophysiological processes for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.
Thiol proteins are important in cellular antioxidant defenses and redox signalling. It is postulated that reactive oxidants cause selective thiol oxidation, but relative sensitivities of different cell proteins and critical targets are not well characterized. We exposed Jurkat cells to H2O2 for 10 min and measured changes in reversibly oxidized proteins by labelling with iodoacetamidofluorescein and two-dimensional electrophoresis. At 200 microM H2O2, which caused activation of the MAP (mitogen-activated protein) kinase ERK (extracellular-signal-regulated kinase), growth arrest and apoptosis, relatively few changes were seen. A total of 28 spots were reversibly oxidized (increased labelling intensity) and 24 decreased. The latter included isoforms of peroxiredoxins 1 and 2, which were irreversibly oxidized. Oxidation of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was striking, and other affected proteins included glutathione S-transferase P1-1, enolase, a regulatory subunit of protein kinase A, annexin VI, the mitotic checkpoint serine/threonine-protein kinase BUB1beta, HSP90beta (heat-shock protein 90beta) and proteosome components. At 20 microM H2O2, changes were fewer, but GAPDH and peroxiredoxin 2 were still modified. Dinitrochlorobenzene treatment, which inhibited cellular thioredoxin reductase and partially depleted GSH, caused reversible oxidation of several proteins, including thioredoxin 1 and peroxiredoxins 1 and 2. Most changes were distinct from those with H2O2, and changes with H2O2 were scarcely enhanced by dinitrochlorobenzene. Relatively few proteins, including deoxycytidine kinase, nucleoside diphosphate kinase and a proteosome activator subunit, responded only to the combined treatment. Thus most of the effects of H2O2 were not linked to thioredoxin oxidation. Our study has identified peroxiredoxin 2 and GAPDH as two of the most oxidant-sensitive cell proteins and has highlighted how readily peroxiredoxins undergo irreversible oxidation.
Oxidants can activate signaling pathways and modulate a variety of cellular activities. Their action at a molecular level involves the post-translational modification of protein thiols. We have developed a proteomic method to monitor the reduction and oxidation of protein thiols, and identify those thiol proteins most sensitive to oxidation. Cells were disrupted in the presence of N-ethylmaleimide to block the reduced thiol proteins and dithiothreitol was added to reduce the oxidized thiol proteins before labeling with 5-iodoacetamidofluorescein. Two-dimensional (2-D) electrophoresis was used to resolve the labeled samples. We applied the method to Jurkat T lymphocytes and examined the effect of diamide on the oxidized and reduced thiol protein profiles. A small percentage of protein thiols were already oxidized in untreated cells. Exposure of cells to 2 mM diamide for ten minutes led to a dramatic increase in thiol protein oxidation as seen in the oxidized thiol protein map. However, it was difficult to detect any change in the pattern of reduced thiol proteins. Separation of proteins by 2-D electrophoresis revealed approximately 200 thiol proteins that were oxidized by diamide treatment. This method will be valuable in elucidating redox signaling pathways.
Social insects host a diversity of viruses. We examined New Zealand populations of the globally widely distributed invasive Argentine ant (Linepithema humile) for RNA viruses. We used metatranscriptomic analysis, which identified six potential novel viruses in the Dicistroviridae family. Of these, three contigs were confirmed by Sanger sequencing as Linepithema humile virus-1 (LHUV-1), a novel strain of Kashmir bee virus (KBV) and Black queen cell virus (BQCV), while the others were chimeric or misassembled sequences. We extended the known sequence of LHUV-1 to confirm its placement in the Dicistroviridae and categorised its relationship to closest relatives, which were all viruses infecting Hymenoptera. We examined further for known viruses by mapping our metatranscriptomic sequences to all viral genomes, and confirmed KBV, BQCV, LHUV-1 and Deformed wing virus (DWV) presence using qRT-PCR. Viral replication was confirmed for DWV, KBV and LHUV-1. Viral titers in ants were higher in the presence of honey bee hives. Argentine ants appear to host a range of' honey bee' pathogens in addition to a virus currently described only from this invasive ant. The role of these viruses in the population dynamics of the ant remain to be determined, but offer potential targets for biocontrol approaches.Social insects carry a range of viruses that can have a major effect on host population dynamics. Perhaps the best known viral community is from honey bees, which has been the focus of considerable study due to their economic importance. A range of different factors are likely to contribute to colony collapse and bee declines in general, with viruses frequently considered key players 1, 2 . A recent review noted honey bees host 24 viruses, primarily in the Dicistroviridae and Iflaviridae families 3 . Of these, the Deformed wing virus (DWV) has been suggested as a likely candidate for the majority of global honey bee colony losses during the past 50 years 4 . Such viruses, however, are not restricted to honey bees. There is increasing evidence that these 'honey bee' viruses are common in a wide range of insect hosts [5][6][7] . Other social insects have been found to carry their own unique suites of viral pathogens. For example, over the last decade four viruses have been described from the red imported fire ant (Solenopsis invicta) 8 . These were the first viruses fully described from ants. Three of these viruses are positive-sense, single-stranded RNA (ssRNA) viruses, with one (Solenopsis invicta virus-1, SINV-1) assigned taxonomically to the Dicistroviridae family, one (Solenopsis invicta virus-3, SINV-3) in a proposed new family, Solinviviridae 9 and the third currently unclassified (Solenopsis invicta virus-2, SINV-2) 8, 9 ; The fourth virus is a DNA virus, and has been placed in the family Parvoviridae 10 . One of the three ssRNA viruses, SINV-3, shows promise as a biocontrol agent as it can cause significant mortality in laboratory fire ant colonies 11 . Metatranscriptomic and pyrosequencing techniques have proven particula...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.