Phagocytosis is a highly localized and rapid event, requiring the generation of spatially and temporally restricted signals. Because phosphatidylinositol 3-kinase (PI3K) plays an important role in the innate immune response, we studied the generation and distribution of 3′ phosphoinositides (3′PIs) in macrophages during the course of phagocytosis. The presence of 3′PI was monitored noninvasively in cells transfected with chimeras of green fluorescent protein and the pleckstrin homology domain of either Akt, Btk, or Gab1. Although virtually undetectable in unstimulated cells, 3′PI rapidly accumulated at sites of phagocytosis. This accumulation was sharply restricted to the phagosomal cup, with little 3′PI detectable in the immediately adjacent areas of the plasmalemma. Measurements of fluorescence recovery after photobleaching were made to estimate the mobility of lipids in the cytosolic monolayer of the phagosomal membrane. Stimulation of phagocytic receptors induced a marked reduction of lipid mobility that likely contributes to the restricted distribution of 3′PI at the cup. 3′PI accumulation during phagocytosis was transient, terminating shortly after sealing of the phagosomal vacuole. Two factors contribute to the rapid disappearance of 3′PI: the dissociation of the type I PI3K from the phagosomal membrane and the persistent accumulation of phosphoinositide phosphatases.
Weak immunogenicity of chronic lymphocytic leukemia (CLL) cells may contribute to disease progression and inhibit effective immunotherapy. Accordingly, agents that enhance the immunogenicity of CLL cells may be useful in immunotherapeutic approaches to this disease. Since Toll-like receptors (TLRs) are major regulators of innate immunity and initiation of adaptive immunity, we studied the effects of viral pathogen associated molecular pattern agonists (that are recognized by TLRs) on the costimulatory phenotype and function of CLL cells. CLL cells (especially those with high endogenous expression of CD38) responded to TLR7-activating imidazoquinolines and guanosine analogs by increasing costimulatory molecule expression, producing inflammatory cytokines, and becoming more sensitive to killing by cytotoxic effectors. Additional activation of protein kinase C pathways increased the ability to stimulate T-cell proliferation, blocked phosphorylation of the transcription factor, signal transducer and activator of transcription (STAT)3, and resulted in the acquisition of a dendritic cell surface phenotype by TLR7-activated CLL cells. Normal B cells also responded to TLR7 activation by increasing costimulatory molecule expression and cytokine production. These findings suggest a potential role for TLR7 agonists in CLL immunotherapy.
Fc receptors on leukocytes mediate internalization of antibody-containing complexes. Soluble immune complexes are taken up by endocytosis, while large antibody-opsonized particles are internalized by phagocytosis. We investigated the role of ubiquitylation in internalization of the human FcgRIIA receptor by endocytosis and phagocytosis. A fusion of FcgRIIA to green¯uorescent protein (GFP) was expressed in ts20 cells, which bear a temperature-sensitive mutation in the E1 ubiquitin-activating enzyme. Uptake of soluble IgG complexes mediated by FcgRIIA±GFP was blocked by incubation at the restrictive temperature, indicating that endocytosis requires ubiquitylation. In contrast, phagocytosis and phagosomal maturation were largely unaffected when ubiquitylation was impaired. FcgRIIA±GFP was ubiquitylated in response to receptor cross-linking. Elimination of the lysine residues present in the cytoplasmic domain of FcgRIIA impaired endocytosis, but not phagocytosis. The proteasomal inhibitor clasto-lactacystin b-lactone strongly inhibited endocytosis, but did not affect phagocytosis. These studies demonstrate a role for ubiquitylation in the endocytosis of immune receptors, and reveal fundamental differences in the mechanisms underlying internalization of a single receptor depending on the size or multiplicity of the ligand complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.