This paper introduces a new derivative-free class of mesh adaptive direct search (MADS) algorithms for solving constrained mixed variable optimization problems, in which the variables may be continuous or categorical. This new class of algorithms, called mixed variable MADS (MV-MADS), generalizes both mixed variable pattern search (MVPS) algorithms for linearly constrained mixed variable problems and MADS algorithms for general constrained problems with only continuous variables. The convergence analysis, which makes use of the Clarke nonsmooth calculus, similarly generalizes the existing theory for both MVPS and MADS algorithms, and reasonable conditions are established for ensuring convergence of a subsequence of iterates to a suitably defined stationary point in the nonsmooth and mixed variable sense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.