Termination of RNA Polymerase II (Pol II) activity serves a vital cellular role by separating ubiquitous transcription units and influencing RNA fate and function. In the yeast Saccharomyces cerevisiae, Pol II termination is carried out by cleavage and polyadenylation factor (CPF-CF) and Nrd1-Nab3-Sen1 (NNS) complexes, which operate primarily at mRNA and non-coding RNA genes, respectively. Premature Pol II termination (attenuation) contributes to gene regulation, but there is limited knowledge of its prevalence and biological significance. In particular, it is unclear how much crosstalk occurs between CPF-CF and NNS complexes and how Pol II attenuation is modulated during stress adaptation. In this study, we have identified an attenuator in the DEF1 DNA repair gene, which includes a portion of the 5′-untranslated region (UTR) and upstream open reading frame (ORF). Using a plasmid-based reporter gene system, we conducted a genetic screen of 14 termination mutants and their ability to confer Pol II read-through defects. The DEF1 attenuator behaved as a hybrid terminator, relying heavily on CPF-CF and Sen1 but without Nrd1 and Nab3 involvement. Our genetic selection identified 22 cis-acting point mutations that clustered into four regions, including a polyadenylation site efficiency element that genetically interacts with its cognate binding-protein Hrp1. Outside of the reporter gene context, a DEF1 attenuator mutant increased mRNA and protein expression, exacerbating the toxicity of a constitutively active Def1 protein. Overall, our data support a biologically significant role for transcription attenuation in regulating DEF1 expression, which can be modulated during the DNA damage response.
The quality and retrieval of genetic information is imperative to the survival and reproduction of all living cells. Ultraviolet (UV) light induces lesions that obstruct DNA access during transcription, replication, and repair. Failure to remove UV-induced lesions can abrogate gene expression and cell division, resulting in permanent DNA mutations. To defend against UV damage, cells utilize transcription-coupled nucleotide excision repair (TC-NER) to quickly target lesions within active genes. In cases of long-term genotoxic stress, a slower alternative pathway promotes degradation of RNA Polymerase II (Pol II) to allow for global genomic nucleotide excision repair (GG-NER). The crosstalk between TC-NER and GG-NER pathways and the extent of their coordination with other nuclear events has remained elusive. We aimed to identify functional links between the DNA damage response (DDR) and the mRNA 3’-end processing complex. Our labs have previously shown that UV-induced inhibition of mRNA processing is a conserved DDR between yeast and mammalian cells. Here we have identified mutations in the yeast mRNA 3’-end processing cleavage factor IA (CFIA) and cleavage and polyadenylation factor (CPF) that confer sensitivity to UV-type DNA damage. In the absence of TC-NER, CFIA and CPF mutants show reduced UV tolerance and an increased frequency of UV-induced genomic mutations, consistent with a role for RNA processing factors in an alternative DNA repair pathway. CFIA and CPF mutants impaired the ubiquitination and degradation of Pol II following DNA damage, but the co-transcriptional recruitment of Pol II degradation factors Elc1 and Def1 was undiminished. Overall these data are consistent with yeast 3’-end processing factors contributing to the removal of Pol II stalled at UV-type DNA lesions, a functional interaction that is conserved between homologous factors in yeast and human cells.
The mass spectrometer revealed the presence of small amounts (0.06 to 0.1 mole %) of C1S02. The equivalent of this as C160180 was accommodated in the final computation. With a rich sample of H2180 (55 atomic % 180), the C1S02 amounted to 2.8 mole % of the total C02. The C1802 evidently arises from the exchange of C16OnO with unreacted H21sO. ACKNOWLEDGMENTThe mass spectrometric analyses were carried out by Maurice Freeh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.