The inward Na+ current underlying the action potential in nerve is terminated by inactivation. The
Summary Members of the CD28 family play important roles in regulating T cell functions and share a common gene structure profile. We have identified VSTM3 as a protein whose gene structure matches that of the other CD28 family members. This protein (also known as TIGIT and WUCAM) has been previously shown to affect immune responses and is expressed on NK cells, activated and memory T cells, and regulatory T cells. The nectin-family proteins CD155 and CD112 serve as counter-structures for VSTM3 and CD155 and CD112 also bind to the activating receptor CD226 on T cells and NK cells. Hence, this group of interacting proteins forms a network of molecules similar to the well-characterized CD28-CTLA4-CD80-CD86 network. In the same way that soluble CTLA4 can be used to block T cell responses, we show that soluble Vstm3 attenuates T cell responses in vitro and in vivo. Moreover, animals deficient in Vstm3 are more sensitive to autoimmune challenges indicating that this new member of the CD28 family is an important regulator of T cell responses.
The proinflammatory cytokines IL-17A and IL-17F have a high degree of sequence similarity and share many biological properties. Both have been implicated as factors contributing to the progression of inflammatory and autoimmune diseases. Moreover, reagents that neutralize IL-17A significantly ameliorate disease severity in several mouse models of human disease. IL-17A mediates its effects through interaction with its cognate receptor, the IL-17 receptor (IL-17RA). We report here that the IL-17RA-related molecule, IL-17RC is the receptor for IL-17F. Notably, both IL-17A and IL-17F bind to IL-17RC with high affinity, leading us to suggest that a soluble form of this molecule may serve as an effective therapeutic antagonist of IL-17A and IL-17F. We generated a soluble form of IL-17RC and demonstrate that it effectively blocks binding of both IL-17A and IL-17F, and that it inhibits signaling in response to these cytokines. Collectively, our work indicates that IL-17RC functions as a receptor for both IL-17A and IL-17F and that a soluble version of this protein should be an effective antagonist of IL-17A and IL-17F mediated inflammatory diseases.
We have characterized platelet-derived growth factor (PDGF) C, a novel growth factor belonging to the PDGF family. PDGF-C is a multidomain protein with the Nterminal region homologous to the extracellular CUB domain of neuropilin-1, and the C-terminal region consists of a growth factor domain (GFD) with homology to vascular endothelial growth factor (25%) and PDGF Achain (23%). A serum-sensitive cleavage site between the two domains allows release of the GFD from the CUB domain. Competition binding and immunoprecipitation studies on cells bearing both PDGF ␣ and  receptors reveal a high affinity binding of recombinant GFD (PDGF-CC) to PDGF receptor-␣ homodimers and PDGF receptor-␣/ heterodimers. PDGF-CC exhibits greater mitogenic potency than PDGF-AA and comparable or greater mitogenic activity than PDGF-AB and PDGF-BB on several mesenchymal cell types. Analysis of PDGF-CC in vivo in a diabetic mouse model of delayed wound healing showed that PDGF-CC significantly enhanced repair of a full-thickness skin excision. Together, these studies describe a third member of the PDGF family (PDGF-C) as a potent mitogen for cells of mesenchymal origin in in vitro and in vivo systems with a binding pattern similar to PDGF-AB.
Target-mediated toxicity constitutes a major limitation for the development of therapeutic antibodies. To redirect the activity of antibodies recognizing widely distributed targets to the site of disease, we have applied a prodrug strategy to create an epidermal growth factor receptor (EGFR)-directed Probody therapeutic-an antibody that remains masked against antigen binding until activated locally by proteases commonly active in the tumor microenvironment. In vitro, the masked Probody showed diminished antigen binding and cell-based activities, but when activated by appropriate proteases, it regained full activity compared to the parental anti-EGFR antibody cetuximab. In vivo, the Probody was largely inert in the systemic circulation of mice, but was activated within tumor tissue and showed antitumor efficacy that was similar to that of cetuximab. The Probody demonstrated markedly improved safety and increased half-life in nonhuman primates, enabling it to be dosed safely at much higher levels than cetuximab. In addition, we found that both Probody-responsive xenograft tumors and primary tumor samples from patients were capable of activating the Probody ex vivo. Probodies may therefore improve the safety profile of therapeutic antibodies without compromising efficacy of the parental antibody and may enable the wider use of empowered antibody formats such as antibody-drug conjugates and bispecifics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.