Recombinant human glucocerebrosidase (imiglucerase, Cerezyme) is used in enzyme replacement therapy for Gaucher disease. Complex oligosaccharides present on Chinese hamster ovary cell-expressed glucocerebrosidase (GCase) are enzymatically remodeled into a mannose core, facilitating mannose receptor-mediated uptake into macrophages. Alternative expression systems could be used to produce GCase containing larger oligomannose structures, offering the possibility of an improvement in targeting to macrophages. A secondary advantage of these expression systems would be to eliminate the need for carbohydrate remodeling. Here, multiple expression systems were used to produce GCase containing primarily terminal oligomannose, from Man2 to Man9. GCase from these multiple expression systems was compared to Cerezyme with respect to affinity for mannose receptor and serum mannose-binding lectin (MBL), macrophage uptake, and intracellular half-life. In vivo studies comparing clearance and targeting of Cerezyme and the Man9 form of GCase were carried out in a Gaucher mouse model (D409V/null). Mannose receptor binding, macrophage uptake, and in vivo targeting were similar for all forms of GCase. Increased MBL binding was observed for all forms of GCase having larger mannose structures than those of Cerezyme, which could influence pharmacokinetic behavior. These studies demonstrate that although alternative cell expression systems are effective for producing oligomannose-terminated glucocerebrosidase, there is no biochemical or pharmacological advantage in producing GCase with an increased number of mannose residues. The display of alternative carbohydrate structures on GCase expressed in these systems also runs the risk of undesirable consequences, such as an increase in MBL binding or a possible increase in immunogenicity due to the presentation of non-mammalian glycans.
Transforming growth factor- (TGF-) is a pleiotropic growth factor; its overexpression has been implicated in many diseases, making it a desirable target for therapeutic neutralization. In initial safety studies, mice were chronically treated (three times per week) with high doses (50 mg/kg) of a murine, pan-neutralizing, anti-TGF- antibody. Nine weeks after the initiation of treatment, a subset of mice exhibited weight loss that was concurrent with decreased food intake. Histopathology revealed a unique, nonneoplastic cystic epithelial hyperplasia and tongue inflammation, as well as dental dysplasia and epithelial hyperplasia and inflammation of both the gingiva and esophagus. In an effort to determine the cause of this site-specific pathology, we examined TGF- expression in these tissues and saliva under normal conditions. By immunostaining, we found higher expression levels of active TGF-1 and TGF-3 in normal tongue and esophageal submucosa compared with gut mucosal tissues, as well as detectable TGF-1 in normal saliva by Western blot analysis. Interestingly, mast cells within the tongue, esophagus, and skin co-localized predominantly with the TGF-1 expressed in these tissues. Our findings demonstrate a novel and restricted pathology in oral and esophageal tissues of mice chronically treated with anti-TGF- that is associated with basal TGF- expression in saliva and by mast cells within these tissues. These studies illustrate a previously unappreciated biological role of TGF- in maintaining homeostasis within both oral and esophageal tissues.
Efficient targeting of therapeutic reagents to tissues and cell types of interest is critical to achieving therapeutic efficacy and avoiding unwanted side effects due to offtarget uptake. To increase assay efficiency and reduce the number of animals used per experiment during preclinical development, we used a combination of direct fluorescence labeling and confocal microscopy to simultaneously examine the biodistribution of two therapeutic proteins, Cerezyme and Ceredase, in the same animals. We show that the fluorescent tags do not interfere with protein uptake and localization. We are able to detect Cerezyme and Ceredase in intact cells and organs and demonstrate colocalization within target cells using confocal microscopy. In addition, the relative amount of protein internalized by different cell types can be quantified using cell type-specific markers and morphometric analysis. This approach provides an easy and straightforward means of assessing the tissue and cell type-specific biodistribution of multiple protein therapeutics in target organs using a minimal number of animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.