Background. Histological examination of the effects of balloon angioplasty have been described from in vitro experiments and a limited number of pathologic specimens. Intravascular ultrasound imaging permits real time cross-sectional observation of the effect of balloon dilation on the atherosclerotic plaque in vivo.Methods and Resuls. The morphological effects of coronary angioplasty were visualized at 66 lesions in 47 patients immediately after balloon dilatation with an intravascular ultrasound imaging catheter. Cross-
In non-diabetic participants given exenatide, blood glucose concentrations rise rather than fall during aerobic exercise with an associated greater catecholamine response.
Previous studies indicate that conventional geometric edge detection techniques, used in quantitative coronary arteriography (QCA), have significant limitations in quantitating coronary cross-sectional area of small diameter (D) vessels (D < 1.00 mm) and lesions with complex cross-section. As a solution to this problem, we have previously reported on an in-vitro validation of a videodensitometric technique that quantitates the absolute cross-sectional area including small vessel diameter (D < 1.00 mm) and any complex shape of the vessel cross-section. For in-vivo validation, plastic tubing (5-8 mm long) with different shape complex cross-section with known cross-sectional area (A = 0.8-4.5 mm2) were percutaneously wedged in the coronary arteries of anesthetized pigs (40-50 kg). Contrast material injections (6-10 ml at 2-4 ml/sec) were made into the left main coronary artery during image acquisition using a motion immune dual-energy subtraction technique, where low and high X-ray energy and filtration were switched at 30 Hz. A comparison was made between the actual and measured cross-sectional area using the videodensitometry and edge detection techniques in tissue suppressed energy subtracted images. In eighteen comparisons the videodensitometry technique produced significantly improved results (slope = 0.87, intercept = 0.24 mm2, r = 0.94) when compared to the edge detection technique (slope = 0.42, intercept = 1.99 mm2, r = 0.39). Also, a cylindrical vessel phantom (D = 1.00-4.75 mm) was used to test the ability to calculate and correct for the effect of the out of plane angle of the arterial segment on the cross-sectional area estimation of the videodensitometry technique. After corrections were made for the out of plane angle using two different projections, there was a good correlation between the actual and the measured cross-sectional area using the videodensitometry technique (slope = 0.91, intercept = 0.11 mm2, r = 0.99). These data suggest that it is possible to quantitate absolute cross-sectional area without any assumption regarding the arterial shape using videodensitometry in conjunction with the motion immune dual-energy subtraction technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.