The argument that human society can decouple economic growth—defined as growth in Gross Domestic Product (GDP)—from growth in environmental impacts is appealing. If such decoupling is possible, it means that GDP growth is a sustainable societal goal. Here we show that the decoupling concept can be interpreted using an easily understood model of economic growth and environmental impact. The simple model is compared to historical data and modelled projections to demonstrate that growth in GDP ultimately cannot be decoupled from growth in material and energy use. It is therefore misleading to develop growth-oriented policy around the expectation that decoupling is possible. We also note that GDP is increasingly seen as a poor proxy for societal wellbeing. GDP growth is therefore a questionable societal goal. Society can sustainably improve wellbeing, including the wellbeing of its natural assets, but only by discarding GDP growth as the goal in favor of more comprehensive measures of societal wellbeing.
In this paper, simple indicators of the propensity for sea water intrusion (SWI) to occur (referred to as "SWI vulnerability indicators") are devised. The analysis is based on an existing analytical solution for the steady-state position of a sharp fresh water-salt water interface. Interface characteristics, that is, the wedge toe location and sea water volume, are used in quantifying SWI in both confined and unconfined aquifers. Rates-of-change (partial derivatives of the analytical solution) in the wedge toe or sea water volume are used to quantify the aquifer vulnerability to various stress situations, including (1) sea-level rise; (2) change in recharge (e.g., due to climate change); and (3) change in seaward discharge. A selection of coastal aquifer cases is used to apply the SWI vulnerability indicators, and the proposed methodology produces interpretations of SWI vulnerability that are broadly consistent with more comprehensive investigations. Several inferences regarding SWI vulnerability arise from the analysis, including: (1) sea-level rise impacts are more extensive in aquifers with head-controlled rather than flux-controlled inland boundaries, whereas the opposite is true for recharge change impacts; (2) sea-level rise does not induce SWI in constant-discharge confined aquifers; (3) SWI vulnerability varies depending on the causal factor, and therefore vulnerability composites are needed that differentiate vulnerability to such threats as sea-level rise, climate change, and changes in seaward groundwater discharge. We contend that the approach is an improvement over existing methods for characterizing SWI vulnerability, because the method has theoretical underpinnings and yet calculations are simple, although the coastal aquifer conceptualization is highly idealized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.