Background Diabetes mellitus type II (DMT-2) is a widely spread metabolic disorder both in developed and developing countries. The role of oxidative stress is well established in DMT-2 pathogenesis. The synthetic drugs for DMT-2 are associated with serious side complications. Antioxidant and α-glucosidase inhibitory actions of phytochemicals from various plant species are considered as an alternative to synthetic drugs for DMT-2 management. The present study aimed to evaluate the antioxidant activity, α-glucosidase inhibitory potential and phytochemical profiling of Hyophorbe lagenicaulis. Methods The total phenolic and flavonoid contents, in vitro antioxidant activity (α, α-diphenyl-β-picrylhydrazyl (DPPH) free radical scavenging and phosphomolybdenum method) and α-glucosidase inhibition of ultrasonicated hydroethanolic H. lagenicaulis leaf extracts were determined spectrophotometrically. The results of DPPH assay and α-glucosidase inhibition were reported in terms of IC50 value. The phytochemical profiling was accomplished by UHPLC-Q-TOF/MS/MS technique. Results and Discussion Findings leaped 60% ethanolic extract as rich fraction regarding total phenolic and flavonoid contents. The 60% ethanolic fraction was a promising source of natural antioxidants and α-glucosidase inhibitory agents as indicated by anti-radical and enzyme inibitory activities. Kaempferol, rutin, hesperetin 5-O-glucoside, kaempferol-coumaroyl-glucoside, luteolin 3-glucoside, Isorhamnetin-3-O-rutinoside, trimethoxyflavone derivatives and citric acid were identified by UHPLC-Q-TOF-MS/MS. These compounds were believed to be responsible for the strong antioxidant and enzyme inhibitory activity of plant extracts. The extensive metabolite profiling of H. lagenicaulis was carried out the first time as never reported previously. The H. lagenicaulis might be an appropriate choice to manage diabetes mellitus in an alternate way. The findings may be further exploited extensively for toxicity evaluation to proceed with functional food development having antidiabetic attributes.
The purpose of the work was to evaluate the Fe-chelating activity of freeze drying assisted ultrasonicated hydroethanolic leaf extracts of Conocarpus lancifolius Engl. along with 1H-NMR based classification of metabolites in most active extract. The finding revealed that 60% ethanolic extract was the most active fraction regarding Fe-chelating activity with value of 75.4 ± 0.6% followed by 80% ethanolic extract having chelating value of 69.24±1.02%. The least Fe-chelating activity was exhibited by aqueous extract. The statistical analysis revealed that the Fe-chelating activity by 60% ethanolic extract was significantly higher than other fractions except EDTA which was used as standard chelating agent. The 1HNMR technique predicted the presence of aromatic secondary metabolites of polyphenolic origin due to numerous peaks in respective regions. The peaks in carbohydrate and organic acid regions were also observed. The research outcomes suggested that C. lancifolius may be workable choice to move further for the development of cure and management practices for iron load based oxidative stress oriented diseases including diabetes mellitus type II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.