The ability to record and analyse electrical behaviour across the heart using optical and electrode mapping has revolutionised cardiac research. However, wider uptake of these technologies is constrained by the lack of multi-functional and robustly characterised analysis and mapping software. We present ElectroMap, an adaptable, high-throughput, open-source software for processing, analysis and mapping of complex electrophysiology datasets from diverse experimental models and acquisition modalities. Key innovation is development of standalone module for quantification of conduction velocity, employing multiple methodologies, currently not widely available to researchers. ElectroMap has also been designed to support multiple methodologies for accurate calculation of activation, repolarisation, arrhythmia detection, calcium handling and beat-to-beat heterogeneity. ElectroMap implements automated signal segmentation, ensemble averaging and integrates optogenetic approaches. Here we employ ElectroMap for analysis, mapping and detection of pro-arrhythmic phenomena in silico, in cellulo, animal model and in vivo patient datasets. We anticipate that ElectroMap will accelerate innovative cardiac research and enhance the uptake, application and interpretation of mapping technologies leading to novel approaches for arrhythmia prevention.
Blebbistatin (BS) is a recently discovered inhibitor of the myosin II isoform and has been adopted as the mechanical uncoupler of choice for optical mapping, because previous studies suggest that BS has no significant cardiac electrophysiological effects in a number of species. The aim of this study was to determine whether BS affects cardiac electrophysiology in isolated New Zealand White rabbit hearts. Langendorff-perfused hearts (n= 39) in constant-flow mode had left ventricular monophasic action potential duration (MAPD) measured at apical and basal regions during constant pacing (300 ms cycle length). Standard action potential duration restitution was obtained using the single extrastimulus method with measurement of the maximal restitution slope. Ventricular fibrillation threshold was measured as the minimal current inducing sustained ventricular fibrillation with burst pacing (30 stimuli, at 30 ms intervals). Optical action potentials were recorded using the voltage-sensitive dye di-4-ANEPPS. Measurements were taken at baseline and after 60 min perfusion with BS (5 μm). Blebbistatin significantly prolonged left ventricular apical (mean ± SEM; from 129.9 ± 2.9 to 170.7 ± 4.1 ms, P < 0.001, n= 8) and basal MAPD (from 135.0 ± 2.3 to 163.3 ± 5.6 ms, P < 0.001) and effective refractory period (from 141.3 ± 4.8 to 175.6 ± 3.7 ms, P < 0.001) whilst increasing the maximal slope of restitution (apex, from 0.79 ± 0.09 to 1.57 ± 0.16, P < 0.001; and base, from 0.71 ± 0.06 to 1.44 ± 0.24, P < 0.001) and ventricular fibrillation threshold (from 5.3 ± 1.1 to 17.0 ± 2.9 mA, P < 0.001). In other hearts, blebbistatin significantly prolonged optically recorded action potentials (from 136.5 ± 6.3 to 173.0 ± 7.9 ms, P < 0.05, n= 4). In control experiments, the increase of MAPD with blebbistatin was present whether the hearts were perfused in constant-pressure mode (n= 5) or in unloaded conditions (n= 5). These data show that blebbistatin significantly affects cardiac electrophysiology. Its use in optical mapping studies should be treated with caution.
While it is well established that mortality risk after myocardial infarction (MI) increases in proportion to blood glucose concentration at the time of admission, it is unclear whether there is a direct, causal relationship. We investigated potential mechanisms by which increased blood glucose may exert cardiotoxicity. Using a Wistar rat or guinea-pig isolated cardiomyocyte model, we investigated the effects on cardiomyocyte function and electrical stability of alterations in extracellular glucose concentration. Contractile function studies using electric field stimulation (EFS), patch-clamp recording, and Ca2+ imaging were used to determine the effects of increased extracellular glucose concentration on cardiomyocyte function. Increasing glucose from 5 to 20 mM caused prolongation of the action potential and increased both basal Ca2+ and variability of the Ca2+ transient amplitude. Elevated extracellular glucose concentration also attenuated the protection afforded by ischemic preconditioning (IPC), as assessed using a simulated ischemia and reperfusion model. Inhibition of PKCα and β, using Gö6976 or specific inhibitor peptides, attenuated the detrimental effects of glucose and restored the cardioprotected phenotype to IPC cells. Increased glucose concentration did not attenuate the cardioprotective role of PKCε, but rather activation of PKCα and β masked its beneficial effect. Elevated extracellular glucose concentration exerts acute cardiotoxicity mediated via PKCα and β. Inhibition of these PKC isoenzymes abolishes the cardiotoxic effects and restores IPC-mediated cardioprotection. These data support a direct link between hyperglycemia and adverse outcome after MI. Cardiac-specific PKCα and β inhibition may be of clinical benefit in this setting.
AimsThe steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF.Methods and resultsExperiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM – to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope.Conclusion(s)Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on steady-state APD may contribute to the failure of restitution slope to predict sudden cardiac death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.