Metric Temporal Logic (MTL) is a prominent specification formalism for real-time systems. In this paper, we show that the satisfiability problem for MTL over finite timed words is decidable, with nonprimitive recursive complexity. We also consider the model-checking problem for MTL: whether all words accepted by a given Alur-Dill timed automaton satisfy a given MTL formula. We show that this problem is decidable over finite words. Over infinite words, we show that model checking the safety fragment of MTL-which includes invariance and time-bounded response properties-is also decidable. These results are quite surprising in that they contradict various claims to the contrary that have appeared in the literature. The question of the decidability of MTL over infinite words remains open.
Abstract. Metric Temporal Logic (MTL)is a prominent specification formalism for realtime systems. In this paper, we show that the satisfiability problem for MTL over finite timed words is decidable, with non-primitive recursive complexity. We also consider the model-checking problem for MTL: whether all words accepted by a given Alur-Dill timed automaton satisfy a given MTL formula. We show that this problem is decidable over finite words. Over infinite words, we show that model checking the safety fragment of MTLwhich includes invariance and time-bounded response properties-is also decidable. These results are quite surprising in that they contradict various claims to the contrary that have appeared in the literature.
Abstract. We study data nets, a generalisation of Petri nets in which tokens carry data from linearly-ordered infinite domains and in which whole-place operations such as resets and transfers are possible. Data nets subsume several known classes of infinite-state systems, including multiset rewriting systems and polymorphic systems with arrays.We show that coverability and termination are decidable for arbitrary data nets, and that boundedness is decidable for data nets in which whole-place operations are restricted to transfers. By providing an encoding of lossy channel systems into data nets without whole-place operations, we establish that coverability, termination and boundedness for the latter class have non-primitive recursive complexity. The main result of the paper is that, even for unordered data domains (i.e., with only the equality predicate), each of the three verification problems for data nets without whole-place operations has non-elementary complexity.
Abstract. In 2004, Berdine, Calcagno and O'Hearn introduced a fragment of separation logic that allows for reasoning about programs with pointers and linked lists. They showed that entailment in this fragment is in coNP, but the precise complexity of this problem has been open since. In this paper, we show that the problem can actually be solved in polynomial time. To this end, we represent separation logic formulae as graphs and show that every satisfiable formula is equivalent to one whose graph is in a particular normal form. Entailment between two such formulae then reduces to a graph homomorphism problem. We also discuss natural syntactic extensions that render entailment intractable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.