Orthogonal frequency division multiplexing (OFDM) implicitly assumes that the channel used for signal transmission is linear and time-invariant for the length of each OFDM symbol. This is necessary for the channel matrix to be diagonalizable via the DFT, under cyclic prefix. The underwater acoustic channel is highly time-variant due to platform motion and environmental fluctuations. As a result, the application of standard OFDM leads to communication algorithms that break down when the transmitter or receiver are mobile. Several modifications to standard OFDM have been suggested and tested in the field. These have demonstrated that OFDM can perform reasonably well when the Doppler spread is minor. Unfortunately, Doppler can be highly time-varying in practice, with different wave propagation paths experiencing different amounts of Doppler. In this paper, we simulate various scenarios of platform mobility such as a receiver moving at constant speed or acceleration, a transmitter whose position is tracing out an oscillating pattern near a nominal transmission point, and basic multipath with significant Doppler spread. We compare the performance of published OFDM and single-carrier methods under these conditions. The single-carrier adaptive resampling equalizer presented here demonstrates significant improvement over OFDM in a variety of scenarios.
We present a robust, video-capable modem designed for wireless underwater acoustic communication. The difficult nature of the underwater acoustic channel necessitates explicit Doppler compensation and mitigation of severe multipath. Due to the relatively low propagation speed of sound in water, platform mobility causes severe Doppler that cannot be treated as in RF wireless communicaiton, as a frequency shift or through a global rescaling. We model the underwater acoustic channel with explicit time-varying Doppler and multipath, and derive the turbo resampling equalizer (TRE) that tracks and mitigates these phenomena. Building on previous work, we demonstate experimental results achieving data rates in excess of 1 Mbps over 100 m in shallow water, and successfully transmit live video over a 5 m underwater acoustic channel from a rapidly moving transmitter with speeds in excess of 3 m/s and accelerations in excess of 7 m/s 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.