BackgroundAntibiotic surveillance is mandatory to optimise antibiotic therapy. Our objectives were to evaluate antibiotic use in our pediatric intensive care unit (PICU) and to implement a simple achievable intervention aimed at improving antibiotic therapy.MethodProspective, 3 months surveillance of antibiotic use on PICU (phase I) and evaluation according to the CDC 12-step campaign with development of an attainable intervention. 3 months surveillance (phase II) after implementation of intervention with comparison of antibiotic use.ResultsAppropriate antibiotic use for culture-negative infection-like symptoms and targeted therapy for proven infections were the main areas for potential improvement. The intervention was a mandatory checklist requiring indication and recording likelihood of infection at start of antibiotic therapy and a review of the continuing need for therapy at 48 h and 5 days, reasons for continuation and possible target pathogen. The percentage of appropriate empiric antibiotic therapy courses for culture-negative infection-like symptoms increased from 18% (10/53) to 74% (42/57; p<0.0001), duration of therapy <3 days increased from 18% (10/53) to 35% (20/57; p=0.05) and correct targeting of pathogen increased from 58% (7/12) to 83% (20/24; p=0.21).ConclusionsAntibiotic surveillance using the CDC 12-step campaign can help to evaluate institutional antibiotic therapy. Development of an attainable intervention using a checklist can show improved antibiotic use with minimal expense.
There has been an increase in fungal infections in patients with chronic lung disease over the past decades, which is associated with rapidly increasing costs to health care systems. An antifungal stewardship team was introduced to a tertiary cardiopulmonary hospital, consisting of a medical mycologist and pharmacy support providing weekly stewardship ward rounds, twice-monthly multidisciplinary team meetings, and a dedicated weekly outpatient clinic. A database was set up to record the activity of the stewardship team. During the first 18 months of implementation, the antifungal stewardship team had reviewed 178 patients, with 285 recommendations made to inpatients, and 287 outpatient visits. The commonest diagnoses treated were allergic bronchopulmonary aspergillosis and chronic pulmonary aspergillosis. Cystic fibrosis was the largest patient group treated, followed by asthma and interstitial lung disease. There was a significant sustained reduction in monthly antifungal expenditure ( = 0.005) by £130,000 per month. There was also a significant reduction in antifungal use, measured as the defined daily dose/100 bed days ( = 0.017). There were no significant changes in expenditure on diagnostic tests. There has been a trend toward more patients having therapeutic levels of voriconazole ( = 0.086) and a significant increase in therapeutic levels of posaconazole ( < 0.0001). This study shows that an effective antifungal stewardship program can significantly reduce expenditure in a specialist respiratory service.
BackgroundLacunar infarct has been characterized as small subcortical infarct. It is postulated to occur from “in situ microatheroma or lipohyalinosis” in small vessel or lacunar mechanism. Based on this idea, such infarcts by lacunar mechanism should not be associated with large area of perfusion deficits that extend beyond the subcortical region to the cortical region. By contrast, selected small subcortical infarcts, as defined by MR imaging in the subacute and chronic stage, may initially have large perfusion deficit or related large vessel occlusions. These infarcts with “lacunar” phenotype may also be caused by disease in the parent vessel and may have very different stroke mechanism from small vessel disease. Our aim is to describe differences in imaging characteristics between patients with small subcortical infarction with “lacunar phenotype” from those with lacunar mechanism.Materials and methodsPatients undergoing acute CT perfusion/angiography (CTP/CTA) within 6 h of symptom onset and follow-up magnetic resonance imaging (MRI) for ischemic stroke were included (2009–2013). Lacunar infarct was defined as a single subcortical infarct ≤20 mm on follow-up MRI. Presence of perfusion deficits, vessel occlusion, and infarct dimensions was compared between lacunar infarcts and other topographical infarct types.ResultsOverall, 182 patients (mean age 66.4 ± 15.3 years, 66% males) were included. Lacunar infarct occurred in 31 (17%) patients. Of these, 12 (39%) patients had a perfusion deficit compared with those with any cortical infarction (120/142, 67%), and the smallest lacunar infarct with a perfusion deficit had a diameter of <5 mm. The majority of patients with lacunar infarction (8/12, 66.7%) had a relevant vessel occlusion. A quarter of lacunar infarcts had a large artery stroke mechanism evident on acute CTP/CTA. Lacunar mechanism was present in 3/8 patients with corona radiata, 5/10 lentiform nucleus, 5/6 posterior limb of internal capsule (PLIC), 3/5 thalamic infarcts, 1/2 miscellaneous locations. There was a trend to significant with regards to finding lacunar mechanism among patients with thalamic and PLIC infarcts versus lentiform nucleus and corona radiata infarcts (p = 0.13).ConclusionDiverse stroke mechanisms were present among subcortical infarcts in different locations. When available acute CTP/CTA should be combined with subacute imaging of subcortical infarct to separate “lacunar phenotype” from those with lacunar mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.