Eccentric training is a potent stimulus for enhancements in muscle mechanical function, and muscle-tendon unit (MTU) morphological and architectural adaptations. The inclusion of eccentric loads not constrained by concentric strength appears to be superior to traditional resistance training in improving variables associated with strength, power and speed performance.
An eccentric contraction involves the active lengthening of muscle under an external load. The molecular and neural mechanisms underpinning eccentric contractions differ from those of concentric and isometric contractions and remain less understood. A number of molecular theories have been put forth to explain the unexplained observations during eccentric contractions that deviate from the predictions of the established theories of muscle contraction. Postulated mechanisms include a strain-induced modulation of actin-myosin interactions at the level of the cross-bridge, the activation of the structural protein titin, and the winding of titin on actin. Accordingly, neural strategies controlling eccentric contractions also differ with a greater, and possibly distinct, cortical activation observed despite an apparently lower activation at the level of the motor unit. The characteristics of eccentric contractions are associated with several acute physiological responses to eccentrically-emphasised exercise. Differences in neuromuscular, metabolic, hormonal and anabolic signalling responses during, and following, an eccentric exercise bout have frequently been observed in comparison to concentric exercise. Subsequently, the high levels of muscular strain with such exercise can induce muscle damage which is rarely observed with other contraction types. The net result of these eccentric contraction characteristics and responses appears to be a novel adaptive signal within the neuromuscular system.
The purpose of this review was to provide a physiological rationale for the use of eccentric resistance training and to provide an overview of the most commonly prescribed eccentric training methods. Based on the existing literature, there is a strong physiological rationale for the incorporation of eccentric training into a training program for an individual seeking to maximize muscle size, strength, and power. Specific adaptations may include an increase in muscle cross-sectional area, force output, and fiber shortening velocities, all of which have the potential to benefit power production characteristics. Tempo eccentric training, flywheel inertial training, accentuated eccentric loading, and plyometric training are commonly implemented in applied contexts. These methods tend to involve different force absorption characteristics and thus, overload the muscle or musculotendinous unit in different ways during lengthening actions. For this reason, they may produce different magnitudes of improvement in hypertrophy, strength, and power. The constraints to which they are implemented can have a marked effect on the characteristics of force absorption and therefore, could affect the nature of the adaptive response. However, the versatility of the constraints when prescribing these methods mean that they can be effectively implemented to induce these adaptations within a variety of populations.
The purpose of this review is to provide strength and conditioning practitioners with recommendations on how best to implement tempo eccentric training (TEMPO), flywheel inertial training (FIT), accentuated eccentric loading (AEL), and plyometric training (PT) into resistance training programs that seek to improve an athlete’s hypertrophy, strength, and power output. Based on the existing literature, TEMPO may be best implemented with weaker athletes to benefit positional strength and hypertrophy due to the time under tension. FIT may provide an effective hypertrophy, strength, and power stimulus for untrained and weaker individuals; however, stronger individuals may not receive the same eccentric (ECC) overload stimulus. Although AEL may be implemented throughout the training year to benefit hypertrophy, strength, and power output, this strategy is better suited for stronger individuals. When weaker and stronger individuals are exposed to PT, they are exposed to an ECC overload stimulus as a result of increases in the ECC force and ECC rate of force development. In conclusion, when choosing to utilize ECC training methods, the practitioner must integrate these methods into a holistic training program that is designed to improve the athlete’s performance capacity.
Douglas, J, Pearson, S, Ross, A, and McGuigan, M. Effects of accentuated eccentric loading on muscle properties, strength, power, and speed in resistance-trained rugby players. J Strength Cond Res 32(10): 2750-2761, 2018-The purpose of this study was to determine the effects of slow and fast tempo resistance training incorporating accentuated eccentric loading (AEL) compared with traditional resistance training (TRT) in trained rugby players. Fourteen subjects (19.4 ± 0.8 years, 1.82 ± 0.05 m, 97.0 ± 11.6 kg, and relative back squat 1 repetition maximum [1RM]: 1.71 ± 0.24 kg·BM) completed either AEL (n = 7) or TRT (n = 7) strength and power protocols. Two 4-week phases of training were completed. The first phase emphasized a slow eccentric tempo, and the second phase emphasized a fast eccentric tempo. Back squat 1RM, inertial load peak power, drop jump reactive strength index (RSI), 40-m speed, maximum sprinting velocity (Vmax), and vastus lateralis (VL) muscle architectural variables were determined at baseline and after each phase of training. Slow AEL elicited superior improvements in back squat 1RM (+0.12 kg·BM; effect size [ES]: 0.48; and 90% confidence interval [CI]: 0.14, 0.82), 40-m time (-0.07 seconds; ES: 0.28; and CI: 0.01-0.55), and Vmax (+0.20 m·s; ES: 0.52; and CI: 0.18-0.86) vs. slow TRT. Fast AEL elicited a small increase in RSI but impaired speed. There was a likely greater increase in peak power with fast TRT (+0.72 W·kg; ES: 0.40; and CI: 0.00-0.79) vs. fast AEL alongside a small increase in VL pennation angle. The short-term incorporation of slow AEL was superior to TRT in improving strength and maximum velocity sprinting speed in rugby players undertaking a concurrent preparatory program. The second 4-week phase of fast AEL may have exceeded recovery capabilities compared with fast TRT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.