Breakthrough Listen (BL) is a ten-year initiative to search for signatures of technologically capable life beyond Earth via radio and optical observations of the local Universe. A core part of the BL program is a comprehensive survey of 1702 nearby stars at radio wavelengths (1-10 GHz). Here, we report on observations with the 64-m CSIRO Parkes radio telescope in New South Wales, Australia, and the 100-m Robert C. Byrd Green Bank radio telescope in West Virginia, USA. Over 2016 January to 2019 March, a sample of 1138 stars was observed at Green Bank using the 1.10-1.90 GHz and 1.80-2.80 GHz receivers, and 189 stars were observed with Parkes over 2.60-3.45 GHz. We searched these data for the presence of engineered signals with Doppler-acceleration drift rates between ±4 Hz s −1 . Here, we detail our data analysis techniques and provide examples of detected events. After excluding events with characteristics consistent with terrestrial radio interference, we are left with zero candidates. That is, we find no evidence of putative radio transmitters above 2.1×10 12 W, and 9.1×10 12 W for Green Bank and Parkes observations, respectively. These observations constitute the most comprehensive search over 1.10-3.45 GHz for technosignatures to date. All data products, totalling ∼219 TB, are available for download as part of the first BL data release (DR1), as described in a companion paper (Lebofsky et. al., 2019)
A line of sight toward the Galactic Center (GC) offers the largest number of potentially habitable systems of any direction in the sky. The Breakthrough Listen program is undertaking the most sensitive and deepest targeted SETI surveys toward the GC. Here, we outline our observing strategies with Robert C. Byrd Green Bank Telescope (GBT) and Parkes telescope to conduct 600 hr of deep observations across 0.7–93 GHz. We report preliminary results from our survey for extraterrestrial intelligence (ETI) beacons across 1–8 GHz with 7.0 and 11.2 hr of observations with Parkes and GBT, respectively. With our narrowband drifting signal search, we were able to place meaningful constraints on ETI transmitters across 1–4 GHz and 3.9–8 GHz with EIRP limits of ≥4 × 1018 W among 60 million stars and ≥5 × 1017 W among half a million stars, respectively. For the first time, we were able to constrain the existence of artificially dispersed transient signals across 3.9–8 GHz with EIRP ≥1 × 1014 W/Hz with a repetition period ≤4.3 hr. We also searched our 11.2 hr of deep observations of the GC and its surrounding region for Fast Radio Burst–like magnetars with the DM up to 5000 pc cm−3 with maximum pulse widths up to 90 ms at 6 GHz. We detected several hundred transient bursts from SGR J1745−2900, but did not detect any new transient bursts with the peak luminosity limit across our observed band of ≥1031 erg s−1 and burst rate of ≥0.23 burst hr−1. These limits are comparable to bright transient emission seen from other Galactic radio-loud magnetars, constraining their presence at the GC.
Breakthrough Listen is the most comprehensive and sensitive search for extraterrestrial intelligence (SETI) to date, employing a collection of international observational facilities including both radio and optical telescopes. During the first three years of the Listen program, thousands of targets have been observed with the Green Bank Telescope (GBT), Parkes Telescope and Automated Planet Finder. At GBT and Parkes, observations have been performed ranging from 700 MHz to 26 GHz, with raw data volumes averaging over 1 PB / day. A pseudo-real time software spectroscopy suite is used to produce multi-resolution spectrograms amounting to approximately 400 GB h −1 GHz −1 beam −1 . For certain targets, raw baseband voltage data is also preserved. Observations with the Automated Planet Finder produce both 2-dimensional and 1-dimensional high resolution (R ∼ 10 5 ) echelle spectral data.Although the primary purpose of Listen data acquisition is for SETI, a range of secondary science has also been performed with these data, including studies of fast radio bursts. Other current and potential research topics include spectral line studies, searches for certain kinds of dark matter, probes of interstellar scattering, pulsar searches, radio transient searches and investigations of stellar activity. Listen data are also being used in the development of algorithms, including machine learning approaches to modulation scheme classification and outlier detection, that have wide applicability not just for astronomical research but for a broad range of science and engineering.In this paper, we describe the hardware and software pipeline used for collection, reduction, archival, and public dissemination of Listen data. We describe the data formats and tools, and present Breakthrough Listen Data Release 1.0 (BLDR 1.0), a defined set of publicly-available raw and reduced data totalling 1 PB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.