Findings pertaining to sex differences in the acquisition and extinction of threat conditioning, a paradigm widely used to study emotional homeostasis, remain inconsistent, particularly in humans. This inconsistency is likely due to multiple factors, one of which is sample size. Here, we pooled functional magnetic resonance imaging (fMRI) and skin conductance response (SCR) data from multiple studies in healthy humans to examine sex differences during threat conditioning, extinction learning, and extinction memory recall. We observed increased functional activation in males, relative to females, in multiple parietal and frontal (medial and lateral) cortical regions during acquisition of threat conditioning and extinction learning. Females mainly exhibited higher amygdala activation during extinction memory recall to the extinguished conditioned stimulus and also while responding to the unconditioned stimulus (presentation of the shock) during threat conditioning. Whole-brain functional connectivity analyses revealed that females showed increased connectivity across multiple networks including visual, ventral attention, and somatomotor networks during late extinction learning. At the psychophysiological level, a sex difference was only observed during shock delivery, with males exhibiting higher unconditioned responses relative to females. Our findings point to minimal to no sex differences in the expression of conditioned responses during acquisition and extinction of such responses. Functional MRI findings, however, show some distinct functional activations and connectivities between the sexes. These data suggest that males and females might use different neural mechanisms, mainly related to cognitive processing, to achieve comparable levels of acquired conditioned responses to threating cues.
Plasmacytoid dendritic cells (pDC) are the most potent producer of type I interferon (IFN), but how pDC are primed in vivo is poorly defined. Using a mouse model of severe malaria, we have previously established that upon priming by CD169+ macrophages (MP), pDC initiate type I IFN-I secretion in the bone marrow (BM) of infected mice via cell-intrinsic TLR7 sensing and cell-extrinsic STING sensing. Herein we show that CD169+ MP and TLR7-sensing are both required for pDC arrest during priming, suggesting CD169+ MP are the source of TLR7 ligands. We establish that TLR7 sensing in pDC and chemotaxis are both required for pDC arrest and functional clustering with CD169+ MP in the BM. Lastly, we demonstrate that STING-sensing in CD169+ MP control pDC initiation of type I IFN production while also regulating pDC clustering and egress from the BM. Collectively, these results link pDC acquisition of type I IFN secreting capacity with changes in their motility, homing and interactions with CD169+ MP during infection. Thus, targeting this cellular interaction may help modulate type I IFN to improve outcomes of microbial infections and autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.